• finetuned Stable LM 2 1.6B model using NEFTune & MixCE loss, over 3 epochs.
  • NEFTune alpha = 5
  • MixCE = 0.5

Example:

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer, StoppingCriteria
import torch

class MyStoppingCriteria(StoppingCriteria):
  def __init__(self, target_sequence, prompt):
    self.target_sequence = target_sequence
    self.prompt=prompt

  def __call__(self, input_ids, scores, **kwargs):
    generated_text = tokenizer.decode(input_ids[0])
    generated_text = generated_text.replace(self.prompt,'')
    if self.target_sequence in generated_text:
        return True 
    return False 

  def __len__(self):
    return 1

  def __iter__(self):
    yield self

modelpath="aloobun/stablelm-2-bun_M4-1_6b"

model = AutoModelForCausalLM.from_pretrained(
    modelpath,
    torch_dtype=torch.bfloat16,
    device_map="cuda",
    trust_remote_code=True,       
)

tokenizer = AutoTokenizer.from_pretrained(
    modelpath,
    trust_remote_code=True,      
    use_fast=False,
)

prompt = "<|im_start|>user\nWhy are people all different, physically?<|im_end|>\n<|im_start|>assistant\n"

encoded_input = tokenizer(prompt, return_tensors='pt')
input_ids=encoded_input['input_ids'].cuda()
streamer = TextStreamer(tokenizer=tokenizer, skip_prompt=True)
_ = model.generate(
    input_ids,
    streamer=streamer,
    pad_token_id=tokenizer.eos_token_id,
    do_sample=True,
    temperature=0.6,
    top_p=0.8,
    max_new_tokens=512,
    stopping_criteria=MyStoppingCriteria("<|im_end|>", prompt)
)
Downloads last month
11
Safetensors
Model size
1.64B params
Tensor type
BF16
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Dataset used to train aloobun/stablelm-2-bun_M4-1_6b

Collection including aloobun/stablelm-2-bun_M4-1_6b