SentenceTransformer based on am-azadi/gte-multilingual-base_Fine_Tuned_1e
This is a sentence-transformers model finetuned from am-azadi/gte-multilingual-base_Fine_Tuned_1e. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: am-azadi/gte-multilingual-base_Fine_Tuned_1e
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NewModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Paul Pelosi’s DUI charges were dropped, by an order from Gavin Newsom. see how this works !?!',
"DUI charges against Nancy Pelosi's husband dropped",
'FRAUDE ELECTORAL Se están volviendo a contar las actas de varias mesas en Cantabria',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 25,743 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 2 tokens
- mean: 133.84 tokens
- max: 5210 tokens
- min: 5 tokens
- mean: 20.52 tokens
- max: 140 tokens
- min: 1.0
- mean: 1.0
- max: 1.0
- Samples:
sentence_0 sentence_1 label Assinando folhas em branco
Joe Biden assinou seus primeiros decretos como presidente dos Estados Unidos em folhas em branco
1.0
FIM DOS TEMPOS NOVA ZELÂNDIA PASSA A PERMITIR ABORTO ATÉ O NASCIMENTO. Parlamento ignora referendo popular e aprova lei. Texto nem exige que seja um médico a realizar o "procedimento". GIL DINIZ DEPUTADO ESTADUAL fto/carteiroreaca sensoCom a aprovação da lei, qualquer mulher poderá tirar a vida de seu bebê em qualquer fase da gravidez. Fim dos tempos!
Nova Zelândia passa a permitir aborto até o nascimento
1.0
बताईये... बाप बार डांसर उठा लाया था, बेटा पोर्न स्टार ही उठा लाया राहुल जी के कांग्रेसी! फिर कहते हैं EVM हैक हो गई... मल्लब हद है एकदम से भारत के विकास Love you Miya Happy Bujix 44 2.5
Indian National Congress workers feeding cake to a poster of a former porn actress Mia Khalifa
1.0
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 1per_device_eval_batch_size
: 1num_train_epochs
: 1multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 1per_device_eval_batch_size
: 1per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.0194 | 500 | 0.0 |
0.0388 | 1000 | 0.0 |
0.0583 | 1500 | 0.0 |
0.0777 | 2000 | 0.0 |
0.0971 | 2500 | 0.0 |
0.1165 | 3000 | 0.0 |
0.1360 | 3500 | 0.0 |
0.1554 | 4000 | 0.0 |
0.1748 | 4500 | 0.0 |
0.1942 | 5000 | 0.0 |
0.2137 | 5500 | 0.0 |
0.2331 | 6000 | 0.0 |
0.2525 | 6500 | 0.0 |
0.2719 | 7000 | 0.0 |
0.2913 | 7500 | 0.0 |
0.3108 | 8000 | 0.0 |
0.3302 | 8500 | 0.0 |
0.3496 | 9000 | 0.0 |
0.3690 | 9500 | 0.0 |
0.3885 | 10000 | 0.0 |
0.4079 | 10500 | 0.0 |
0.4273 | 11000 | 0.0 |
0.4467 | 11500 | 0.0 |
0.4661 | 12000 | 0.0 |
0.4856 | 12500 | 0.0 |
0.5050 | 13000 | 0.0 |
0.5244 | 13500 | 0.0 |
0.5438 | 14000 | 0.0 |
0.5633 | 14500 | 0.0 |
0.5827 | 15000 | 0.0 |
0.6021 | 15500 | 0.0 |
0.6215 | 16000 | 0.0 |
0.6410 | 16500 | 0.0 |
0.6604 | 17000 | 0.0 |
0.6798 | 17500 | 0.0 |
0.6992 | 18000 | 0.0 |
0.7186 | 18500 | 0.0 |
0.7381 | 19000 | 0.0 |
0.7575 | 19500 | 0.0 |
0.7769 | 20000 | 0.0 |
0.7963 | 20500 | 0.0 |
0.8158 | 21000 | 0.0 |
0.8352 | 21500 | 0.0 |
0.8546 | 22000 | 0.0 |
0.8740 | 22500 | 0.0 |
0.8934 | 23000 | 0.0 |
0.9129 | 23500 | 0.0 |
0.9323 | 24000 | 0.0 |
0.9517 | 24500 | 0.0 |
0.9711 | 25000 | 0.0 |
0.9906 | 25500 | 0.0 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.48.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for am-azadi/gte-multilingual-base_Fine_Tuned_2e
Base model
Alibaba-NLP/gte-multilingual-base