chenwuml's picture
initial commit
6c19cd4
|
raw
history blame
11.1 kB
metadata
license: apache-2.0
inference: false

MegaBeam-Mistral-7B-300k Model

MegaBeam-Mistral-7B-300k is a fine-tuned Mistral-7B-Instruct-v0.2 language model that supports input contexts up to 320k tokens. MegaBeam-Mistral-7B-300k can be deployed on a single AWS g5.48xlarge instance using serving frameworks such as vLLM, Sagemaker Huggingface Text Generation Inference (TGI) endpoint, and others. Similarities and differences beween MegaBeam-Mistral-7B-300k and Mistral-7B-Instruct-v0.2 are summarized below:

Model Max context length rope_theta prompt template
Mistral-7B-Instruct-v0.2 32K 1e6 instruction format
MegaBeam-Mistral-7B-300k 320K 25e6 AS ABOVE

Evaluations

InfiniteBench: Extending Long Context Evaluation Beyond 100K Tokens

InfiniteBench is a cutting-edge benchmark tailored for evaluating the capabilities of language models to process, understand, and reason over super long contexts (100k+ tokens). We therefore evaluated MegaBeam-Mistral-7B-300k, Mistral-7B-Instruct-v0.2, Llama3-8B-1M, and Llama3-70B-1M on InfiniteBench. The InfiniteBench authors also evaluated SOTA proprietary and open-source LLMs on InfiniteBench. We thus combined both results in the table below.

Task Name MegaBeam-Mistral
-7B-300k
Mistral-7B
-Instruct-v0.2
Llama-3-8B
-Instruct-262k
Llama3-
70B-1M
GPT-4 YaRN-
Mistral-7B
Kimi-Chat Claude 2 Yi-6B
-200K
Yi-34B
-200K
Chatglm3-6B
-128K
Retrieve.PassKey 100% 75.76% 98.30% 81.35% 100% 92.71% 98.14% 97.80% 100.00% 100.00% 92.20%
Retrieve.Number 96.10% 25.25% 97.79% 97.62% 100% 56.61% 95.42% 98.14% 94.92% 100.00% 80.68%
Retrieve.KV 0% 0% 3.40% 3% 89.00% < 5% 53.60% 65.40% < 5% < 5% < 5%
En.Sum 29.39% 22.13% 16.40% 20.72% 14.73% 9.09% 17.93% 14.45% < 5% < 5% < 5%
En.QA 14.93% 4.93% 13.20% 16.52% 22.22% 9.55% 16.52% 11.97% 9.20% 12.17% < 5%
En.MC 51.52% 7.80% 50.65% 62% 67.25% 27.95% 72.49% 62.88% 36.68% 38.43% 10.48%
En.Dia 9.50% 3.50% 1% 12.50% 8.50% 7.50% 11.50% 46.50% < 5% < 5% < 5%
Zh.QA 10.71% 3.43% 19.02% 26% 25.96% 14.43% 17.93% 9.64% 15.07% 13.61% < 5%
Code.Debug 27.41% 11.60% 22.08% 23.85% 39.59% < 5% 18.02% < 5% < 5% < 5% < 5%
Code.Run 1.75% 0.25% 0% 0% 23.25% < 5% < 5% < 5% < 5% < 5% < 5%
Math.Calc 0% 0% 0% 0% < 5% < 5% < 5% < 5% < 5% < 5% < 5%
Math.Find 24.28% 26.28% 15.40% 30% 60.00% 17.14% 12.57% 32.29% < 5% 25.71% 7.71%
Average 30.70% 15.08% 28.10% 31.13% 46.08% 20.41% 34.93% 37.21% 22.78% 25.41% 17.59%

The 12 tasks evaluated in the InfiniteBench are summarized below:

Task Name Context # Examples Avg Input Tokens Avg Output Tokens Description
En.Sum Fake Book 103 171.5k 1.1k Summarization of a fake book created with core entity substitution.
En.QA Fake Book 351 192.6k 4.8 Free-form question answering based on the fake book.
En.MC Fake Book 229 184.4k 5.3 Multiple choice questions derived from the fake book.
En.Dia Script 200 103.6k 3.4 Identification of talkers in partially anonymized scripts.
Zh.QA New Book 175 2068.6k 6.3 Question answering on a set of newly collected books.
Code.Debug Code Document 394 114.7k 4.8 Finding which function in a code repo contains an crashing error (in multiple choice form).
Code.Run Synthetic 400 75.2k 1.3 Simulating execution of multiple simple, synthetic functions.
Math.Calc Synthetic 50 43.9k 43.9k Calculations involving super-long arithmetic equations.
Math.Find Synthetic 350 87.9k 1.3 Finding special integers in a lengthy list.
Retrieve.PassKey Synthetic 590 122.4k 2.0 Retrieving hidden keys in a noisy long context.
Retrieve.Number Synthetic 590 122.4k 4.0 Locating repeated hidden numbers in a noisy long context.
Retrieve.KV Synthetic 500 89.9k 22.7 Finding the corresponding value from a dictionary and a key.

How to Serve MegaBeam-Mistral-7B-300k on vLLM

On an AWS g5.48xlarge instance, upgrade vLLM to the latest version as per documentation on vLLM.

Start the server

python3 -m vllm.entrypoints.openai.api_server --model amazon/MegaBeam-Mistral-7B-300k --tensor-parallel-size 8

Note that we have set the max_position_embeddings in the config.json to 288,800 in order to fit model's KV-cache on a single g5.48xlarge instance, which has 8 x A10 GPUs (24GB RAM per GPU).

On an instance with larger GPU RAM (e.g. p4d.24xlarge), feel free to increase the value of the max_position_embeddings(e.g. to 350K), which the model should be able to process.

Run the client

from openai import OpenAI

# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    # defaults to os.environ.get("OPENAI_API_KEY")
    api_key=openai_api_key,
    base_url=openai_api_base,
)

models = client.models.list()
model = models.data[0].id

chat_completion = client.chat.completions.create(
        messages = [
            {"role": "user", "content": "What is your favourite condiment?"}, # insert your long context here
            {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
            {"role": "user", "content": "Do you have mayonnaise recipes?"} # insert your long context here
        ],
        model=model,
)

print("Chat completion results:")
print(chat_completion)

Deploy the Model as A SageMaker Endpoint

To deploy MegaBeam-Mistral-7B-300k on a SageMaker endpoint, please follow the example code as below.

#Requires: [sagemaker](https://pypi.org/project/sagemaker/) 2.192.1 or later.
pip install -U sagemaker
import sagemaker
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri
import time

sagemaker_session = sagemaker.Session()
region = sagemaker_session.boto_region_name
role = sagemaker.get_execution_role()

image_uri = get_huggingface_llm_image_uri(
  backend="huggingface", # or lmi
  region=region,
)

model_name = "MegaBeam-Mistral-7B-300k-" + time.strftime("%Y-%m-%d-%H-%M-%S", time.gmtime())

hub = {
    'HF_MODEL_ID':'amazon/MegaBeam-Mistral-7B-300k',
    'HF_TASK':'text-generation',
    'SM_NUM_GPUS':'8',
    "MAX_INPUT_LENGTH": '288416',
    "MAX_TOTAL_TOKENS": '288800',
    "MAX_BATCH_PREFILL_TOKENS": '288800',
    "MAX_BATCH_TOTAL_TOKENS":  '288800',
}

model = HuggingFaceModel(
    name=model_name,
    env=hub,
    role=role,
    image_uri=image_uri
)
predictor = model.deploy(
  initial_instance_count=1,
  instance_type="ml.g5.48xlarge",
  endpoint_name=model_name,
    
)

Limitations

Before using the MegaBeam-Mistral-7B-300k model, it is important to perform your own independent assessment, and take measures to ensure that your use would comply with your own specific quality control practices and standards, and that your use would comply with the local rules, laws, regulations, licenses and terms that apply to you, and your content.