l3kpm2-lora / README.md
amphora's picture
Upload folder using huggingface_hub
c351ff0 verified
---
base_model: NousResearch/Meta-Llama-3-8B-Instruct
library_name: peft
license: other
tags:
- generated_from_trainer
model-index:
- name: outputs/lora-out
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.1`
```yaml
base_model: NousResearch/Meta-Llama-3-8B-Instruct
model_type: LlamaForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: true
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: absolute-feedback-long.jsonl
type: chat_template
chat_template: llama3
field_messages: messages
message_field_role: role
message_field_content: content
roles:
user:
- user
assistant:
- assistant
val_set_size: 0.01
output_dir: ./outputs/lora-out
sequence_len: 4096
sample_packing: false
pad_to_sequence_len: false
adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project: fincode
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 32
micro_batch_size: 12
num_epochs: 3
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
s2_attention:
deepspeed: deepspeed_configs/zero1.json
warmup_steps: 20
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
pad_token: <|end_of_text|>
```
</details><br>
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/guijinson/fincode/runs/9bh77pfv)
# outputs/lora-out
This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0461
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 12
- eval_batch_size: 12
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 32
- total_train_batch_size: 3072
- total_eval_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.8935 | 0.0311 | 1 | 1.8884 |
| 1.6965 | 0.2490 | 8 | 1.5971 |
| 1.3733 | 0.4981 | 16 | 1.3446 |
| 1.2466 | 0.7471 | 24 | 1.2463 |
| 1.1852 | 0.9961 | 32 | 1.1822 |
| 1.1444 | 1.2451 | 40 | 1.1379 |
| 1.0986 | 1.4942 | 48 | 1.1052 |
| 1.0774 | 1.7432 | 56 | 1.0816 |
| 1.065 | 1.9922 | 64 | 1.0657 |
| 1.055 | 2.2412 | 72 | 1.0551 |
| 1.0438 | 2.4903 | 80 | 1.0484 |
| 1.0394 | 2.7393 | 88 | 1.0463 |
| 1.0466 | 2.9883 | 96 | 1.0461 |
### Framework versions
- PEFT 0.11.1
- Transformers 4.42.3
- Pytorch 2.1.2
- Datasets 2.19.1
- Tokenizers 0.19.1