luis-espinosa's picture
Upload trained SetFit model (multilabel)
861ee7f verified
---
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Zouk Capital invests £35 million into Energy Park through CIIF financing
- text: Volkswagen Sets Ambitious Goals for Electric Vehicle Production
- text: LATAM Unveils New Dreamliner Economy Cabin Design
- text: Emirates Announces Additional Flights for Eid Al Fitr
- text: Japan Airlines Unveils ‘MYAKU-MYAKU’ Dreamliner Livery
metrics:
- accuracy
pipeline_tag: text-classification
library_name: setfit
inference: false
base_model: thenlper/gte-small
model-index:
- name: SetFit with thenlper/gte-small
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.4864864864864865
name: Accuracy
---
# SetFit with thenlper/gte-small
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [thenlper/gte-small](https://huggingface.co/thenlper/gte-small) as the Sentence Transformer embedding model. A OneVsRestClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [thenlper/gte-small](https://huggingface.co/thenlper/gte-small)
- **Classification head:** a OneVsRestClassifier instance
- **Maximum Sequence Length:** 512 tokens
<!-- - **Number of Classes:** Unknown -->
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.4865 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("amplyfi/gte-small_all-labels_multilabel")
# Run inference
preds = model("LATAM Unveils New Dreamliner Economy Cabin Design")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 4 | 9.9616 | 30 |
### Training Hyperparameters
- batch_size: (16, 16)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0018 | 1 | 0.3005 | - |
| 0.0903 | 50 | 0.2933 | - |
| 0.1805 | 100 | 0.2219 | - |
| 0.2708 | 150 | 0.1568 | - |
| 0.3610 | 200 | 0.1334 | - |
| 0.4513 | 250 | 0.1204 | - |
| 0.5415 | 300 | 0.1215 | - |
| 0.6318 | 350 | 0.1154 | - |
| 0.7220 | 400 | 0.1065 | - |
| 0.8123 | 450 | 0.0935 | - |
| 0.9025 | 500 | 0.0892 | - |
| 0.9928 | 550 | 0.0807 | - |
| 1.0830 | 600 | 0.0776 | - |
| 1.1733 | 650 | 0.0716 | - |
| 1.2635 | 700 | 0.06 | - |
| 1.3538 | 750 | 0.0677 | - |
| 1.4440 | 800 | 0.0607 | - |
| 1.5343 | 850 | 0.065 | - |
| 1.6245 | 900 | 0.0593 | - |
| 1.7148 | 950 | 0.0622 | - |
| 1.8051 | 1000 | 0.064 | - |
| 1.8953 | 1050 | 0.0624 | - |
| 1.9856 | 1100 | 0.0667 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.42.2
- PyTorch: 2.5.1+cu124
- Datasets: 3.1.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->