bert-finetuned-spam / README.md
ana-grassmann's picture
End of training
d2ab612 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: google-bert/bert-base-uncased
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: bert-finetuned-spam
    results: []

bert-finetuned-spam

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1942
  • Accuracy: 0.952
  • F1: 0.9502
  • Precision: 0.9871
  • Recall: 0.916

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2.5719605731158755e-06
  • train_batch_size: 4
  • eval_batch_size: 2
  • seed: 19
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.2449 1.0 2250 0.2435 0.901 0.8930 0.9718 0.826
0.2545 2.0 4500 0.2138 0.937 0.9336 0.9866 0.886
0.1397 3.0 6750 0.2162 0.944 0.9413 0.9890 0.898
0.1184 4.0 9000 0.2134 0.946 0.9436 0.9869 0.904
0.2056 5.0 11250 0.1942 0.952 0.9502 0.9871 0.916

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1