anemll's picture
Upload folder using huggingface_hub
a9469a5 verified
# chat.py
#!/usr/bin/env python3
# chat.py
# Copyright (c) 2025 Anemll
# Licensed under the MIT License
import argparse
import os
import re
import glob
from pathlib import Path
import coremltools as ct
from transformers import LlamaTokenizer, AutoTokenizer
import torch
import torch.nn.functional as F
import numpy as np
import queue
import threading
import time
import yaml
import sys
# ANSI color codes
LIGHT_BLUE = "\033[94m"
DARK_BLUE = "\033[34m"
LIGHT_GREEN = "\033[92m"
RESET_COLOR = "\033[0m"
# Add at the top with other constants
WARMUP_TOKEN_LIMIT = 10 # Maximum tokens to generate during warmup
class TokenPrinter:
"""Handles background printing of generated tokens."""
def __init__(self, tokenizer):
self.tokenizer = tokenizer
self.token_queue = queue.Queue()
self.stop_event = threading.Event()
self.thread = None
self.buffer = ""
self.lock = threading.Lock()
self.thinking = True # Track if we're still in thinking mode
self.decoding_buffer = [] # Buffer for token IDs
# Timing and stats tracking
self.start_time = time.time()
self.token_count = 0
self.prefill_time = 0
self.inference_time = 0
self.context_pos = 0
self.start()
def start(self):
"""Start the printer thread."""
if self.thread is None:
self.thread = threading.Thread(target=self._print_worker)
self.thread.daemon = True
self.thread.start()
def add_token(self, token_id):
"""Add a token to the print queue."""
if not self.stop_event.is_set():
self.token_queue.put(token_id)
self.token_count += 1
def drain_buffer(self):
"""Decode token IDs from decoding_buffer in the main thread."""
if not self.decoding_buffer:
return
# Decode all tokens at once in the main thread
token_str = self.tokenizer.decode(self.decoding_buffer)
self.decoding_buffer.clear()
# Color-handling logic
if self.thinking and "</think>" in token_str:
self.thinking = False
parts = token_str.split("</think>")
if len(parts) > 0:
print(parts[0] + "</think>", end='', flush=True)
if len(parts) > 1:
print(LIGHT_BLUE + parts[1], end='', flush=True)
else:
if not self.thinking:
print(LIGHT_BLUE + token_str, end='', flush=True)
else:
print(token_str, end='', flush=True)
def _print_worker(self):
"""Worker thread that takes token_ids from the queue."""
while not self.stop_event.is_set():
try:
token_id = self.token_queue.get(timeout=0.01)
with self.lock:
self.decoding_buffer.append(token_id)
self.token_queue.task_done()
except queue.Empty:
continue
except Exception as e:
print(f"\nError: Token printer error: {str(e)}")
break
def stop(self):
"""Stop the printer thread."""
if self.thread and self.thread.is_alive():
self.stop_event.set()
try:
self.thread.join(timeout=1.0)
except Exception:
pass
print(RESET_COLOR) # Reset color at the end
return self.buffer
def set_timing(self, prefill_time, inference_time, context_pos):
"""Set timing information."""
self.prefill_time = prefill_time
self.inference_time = inference_time
self.context_pos = context_pos
def parse_model_path(path):
"""Parse model path and return full path with .mlmodelc or .mlpackage extension."""
path = Path(path)
# If path exists exactly as specified, return it
if path.exists():
return str(path)
# Try with both extensions
candidates = [
path, # Original path
path.with_suffix('.mlmodelc'), # With .mlmodelc
path.with_suffix('.mlpackage'), # With .mlpackage
Path(str(path) + '.mlmodelc'), # Handle case where extension is included
Path(str(path) + '.mlpackage')
]
# Try all possible paths
for candidate in candidates:
if candidate.exists():
print(f"Found model at: {candidate}")
return str(candidate)
# If we get here, no valid path was found
print("\nError: Model not found. Tried following paths:")
for candidate in candidates:
print(f" {candidate}")
raise FileNotFoundError(f"Model not found: {path}")
def parse_ffn_filename(path):
"""Parse FFN model filename to extract chunk information."""
path = Path(path)
pattern = r'FFN_PF.*_chunk_(\d+)of(\d+)'
match = re.search(pattern, path.name)
if match:
current_chunk = int(match.group(1))
total_chunks = int(match.group(2))
return current_chunk, total_chunks
return None, None
def find_all_chunks(base_path):
"""Find all chunk files matching the base FFN path pattern."""
path = Path(base_path)
pattern = re.sub(r'_chunk_\d+of\d+', '_chunk_*', str(path))
return sorted(glob.glob(pattern))
def load_model(path, function_name=None):
"""Load a CoreML model, handling both .mlmodelc and .mlpackage formats."""
path = Path(path)
compute_unit = ct.ComputeUnit.CPU_AND_NE
try:
if path.suffix == '.mlmodelc':
# For compiled models (.mlmodelc), use CompiledMLModel
if function_name:
return ct.models.CompiledMLModel(str(path), compute_unit, function_name=function_name)
else:
return ct.models.CompiledMLModel(str(path), compute_unit)
else:
# For packages (.mlpackage)
if function_name:
return ct.models.MLModel(str(path), function_name=function_name)
else:
return ct.models.MLModel(str(path))
except RuntimeError as e:
if "valid manifest does not exist" in str(e):
print(f"\nError: Could not load compiled model at {path}")
print("This might be because:")
print("1. The model is not properly compiled")
print("2. The model was compiled for a different OS version")
print("3. The model needs to be recompiled")
print("\nTry using the .mlpackage version instead, or recompile the model.")
raise
def load_metadata(model,args):
# Extract metadata and config parameters
metadata = {}
if hasattr(model, 'user_defined_metadata'):
meta = model.user_defined_metadata
# Extract key parameters with defaults
metadata['context_length'] = int(meta.get('com.anemll.context_length', 512))
metadata['state_length'] = int(meta.get('com.anemll.state_length', metadata['context_length'])) # Added state_length
metadata['batch_size'] = int(meta.get('com.anemll.batch_size', 64))
metadata['lut_bits'] = int(meta.get('com.anemll.lut_bits', 0))
metadata['num_chunks'] = int(meta.get('com.anemll.num_chunks', 1))
print("\nExtracted Parameters:")
print(f" Context Length: {metadata['context_length']}")
print(f" State Length: {metadata['state_length']}")
print(f" Prefill Batch Size: {metadata['batch_size']}")
print(f" LUT Bits: {metadata['lut_bits']}")
print(f" Number of Chunks: {metadata['num_chunks']}")
# Print model info
print("\nModel Info:")
if 'com.anemll.info' in meta:
print(f" {meta['com.anemll.info']}")
if 'com.github.apple.coremltools.version' in meta:
print(f" CoreML Tools: {meta['com.github.apple.coremltools.version']}")
# Print model input/output shapes
print("\nModel Shapes:")
if hasattr(model, 'input_description'):
print(" Inputs:")
for name, desc in model.input_description.items():
print(f" {name}: {desc}")
if hasattr(model, 'output_description'):
print(" Outputs:")
for name, desc in model.output_description.items():
print(f" {name}: {desc}")
else:
print("\nWarning: No metadata found in model")
# Check if model directory name contains context length pattern (ctxXXX)
ctx_len = 512
if args.context_length is None:
import re
ctx_match = re.search(r'ctx(\d+)', str(args.d))
if ctx_match:
ctx_len0 = int(ctx_match.group(1))
if 512 <= ctx_len0 <= 8096:
ctx_len = ctx_len0
print(f"\nDetected context length {ctx_len} from directory name")
else:
print(f"\nWarning: No context length found in directory {ctx_len} from directory name {args.d}")
else:
ctx_len = args.context_length
# Use defaults
metadata['context_length'] = ctx_len
metadata['state_length'] = ctx_len
metadata['batch_size'] = 64
metadata['lut_bits'] = 4
metadata['num_chunks'] = 4
print("\nUsing default parameters:")
print(f" Context Length: {metadata['context_length']}")
print(f" State Length: {metadata['state_length']}")
print(f" Prefill Batch Size: {metadata['batch_size']}")
print(f" LUT Bits: {metadata['lut_bits']}")
print(f" Number of Chunks: {metadata['num_chunks']}")
return metadata
def load_models(args,metadata):
"""Load all required models and extract metadata."""
print("\nLoading models...")
try:
# Load embeddings model
print("\nLoading embeddings model...")
embed_path = parse_model_path(args.embed)
print(f"Loading from: {embed_path}")
embed_model = load_model(embed_path)
print("Embeddings model loaded successfully")
metadata = load_metadata(embed_model,args)
# Load LM head model
print("\nLoading LM head model...")
lmhead_path = parse_model_path(args.lmhead)
print(f"Loading from: {lmhead_path}")
lmhead_model = load_model(lmhead_path)
print("LM head model loaded successfully")
# Parse FFN path and find chunks if needed
print("\nLoading FFN+PREFILL model(s)...")
ffn_path = parse_model_path(args.ffn)
chunk_no, total_chunks = parse_ffn_filename(ffn_path)
ffn_models = []
if chunk_no and total_chunks:
print(f"\nDetected chunked FFN+PREFILL model ({total_chunks} chunks)")
# Find and load all chunks
chunk_paths = find_all_chunks(ffn_path)
if len(chunk_paths) != total_chunks:
raise ValueError(f"Found {len(chunk_paths)} chunks but filename indicates {total_chunks} chunks")
for chunk_path in chunk_paths:
print(f"\nLoading FFN+PREFILL chunk: {Path(chunk_path).name}")
try:
# For chunked models, we need both infer and prefill functions
ffn_models.append({
'infer': load_model(chunk_path, function_name='infer'),
'prefill': load_model(chunk_path, function_name='prefill')
})
print("Chunk loaded successfully")
except Exception as e:
print(f"Error loading chunk {chunk_path}: {str(e)}")
raise
metadata = load_metadata(ffn_models[0],args)
else:
print("\nLoading single FFN model...")
ffn_models.append(load_model(ffn_path))
print("FFN model loaded successfully")
return embed_model, ffn_models, lmhead_model, metadata
except Exception as e:
print(f"\nError loading models: {str(e)}")
print("\nPlease ensure all model files exist and are accessible.")
print("Expected files:")
print(f" Embeddings: {args.embed}")
print(f" LM Head: {args.lmhead}")
print(f" FFN: {args.ffn}")
raise
# At the top of the file, make this a default path
def initialize_tokenizer(model_path=None):
"""Initialize and configure the tokenizer."""
try:
tokenizer = AutoTokenizer.from_pretrained(
str(model_path),
use_fast=False,
trust_remote_code=True
)
print("\nTokenizer Configuration:")
print(f"Tokenizer type: {type(tokenizer)}")
print(f"Tokenizer name: {tokenizer.__class__.__name__}")
print(f"Vocabulary size: {len(tokenizer)}")
print(f"Model max length: {tokenizer.model_max_length}")
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
print("Set PAD token to EOS token")
tokenizer.padding_side = "left"
print(f"\nSpecial Tokens:")
print(f"PAD token: '{tokenizer.pad_token}' (ID: {tokenizer.pad_token_id})")
print(f"EOS token: '{tokenizer.eos_token}' (ID: {tokenizer.eos_token_id})")
print(f"BOS token: '{tokenizer.bos_token}' (ID: {tokenizer.bos_token_id})")
print(f"UNK token: '{tokenizer.unk_token}' (ID: {tokenizer.unk_token_id})")
return tokenizer
except Exception as e:
print(f"\nError: Failed to load tokenizer from {model_path}")
print(f"Error details: {str(e)}")
print(f"Error type: {type(e)}")
print("\nThis code requires a Llama 3.2 model for chat template functionality.")
print("Please provide the path to a Llama 3.2 model directory.")
import traceback
traceback.print_exc()
raise
def make_causal_mask(length, start):
"""Create causal attention mask."""
mask = np.full((1, 1, length, length), -np.inf, dtype=np.float16)
row_indices = np.arange(length).reshape(length, 1)
col_indices = np.arange(length).reshape(1, length)
mask[:, :, col_indices <= (row_indices + start)] = 0
return mask
def run_prefill(embed_model, ffn_models, input_ids, current_pos, context_length, batch_size, state):
"""Run prefill on the input sequence."""
#print(f"[DEBUG] Running prefill from 0 to {current_pos}")
# Process in batches
batch_pos = 0
while batch_pos < current_pos:
batch_end = min(batch_pos + batch_size, current_pos)
current_batch_size = batch_end - batch_pos
#print(f"[DEBUG] Prefill batch {batch_pos}-{batch_end} (size={current_batch_size})")
# Get current batch
batch_input = input_ids[:, batch_pos:batch_end]
# Pad to full batch size
batch_input = F.pad(
batch_input,
(0, batch_size - current_batch_size),
value=0
)
# Generate position IDs for this batch
position_ids = torch.arange(batch_pos, batch_pos + batch_size, dtype=torch.int32)
# Create causal mask for this batch
causal_mask = make_causal_mask(context_length, 0) # Always start from 0 for prefill
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
batch_causal_mask = causal_mask[:, :, batch_pos:batch_pos + batch_size, :]
# Run embeddings
hidden_states = torch.from_numpy(
embed_model.predict({'input_ids': batch_input.numpy()})['hidden_states']
)
# Run through FFN chunks
for ffn_model in ffn_models:
if isinstance(ffn_model, dict):
inputs = {
'hidden_states': hidden_states.numpy(),
'position_ids': position_ids.numpy(),
'causal_mask': batch_causal_mask.numpy(),
'current_pos': np.array([batch_pos], dtype=np.int32)
}
output = ffn_model['prefill'].predict(inputs, state)
hidden_states = torch.from_numpy(output['output_hidden_states'])
batch_pos = batch_end
return torch.tensor([current_pos], dtype=torch.int32)
def generate_next_token(embed_model, ffn_models, lmhead_model, input_ids, pos, context_length, state=None, temperature=0.0):
"""Generate the next token."""
# Get current token
current_token = input_ids[:, pos-1:pos]
# Run embeddings
hidden_states = torch.from_numpy(
embed_model.predict({'input_ids': current_token.numpy()})['hidden_states']
)
# Create masks
update_mask = torch.zeros((1, 1, context_length, 1), dtype=torch.float16)
update_mask[0, 0, pos-1, 0] = 1.0
position_ids = torch.tensor([pos-1], dtype=torch.int32)
# Create causal mask for current position
causal_mask = make_causal_mask(context_length, 0) # Always start from 0 for generation
single_causal_mask = torch.tensor(causal_mask[:, :, pos-1:pos, :], dtype=torch.float16)
# Run through FFN chunks
for ffn_model in ffn_models:
if isinstance(ffn_model, dict):
inputs = {
'hidden_states': hidden_states.numpy(),
'update_mask': update_mask.numpy(),
'position_ids': position_ids.numpy(),
'causal_mask': single_causal_mask.numpy(),
'current_pos': position_ids.numpy()
}
output = ffn_model['infer'].predict(inputs, state)
hidden_states = torch.from_numpy(output['output_hidden_states'])
# Run LM head and get next token
lm_output = lmhead_model.predict({'hidden_states': hidden_states.numpy()})
if 'logits1' in lm_output:
logits_parts = []
for i in range(1, 9):
key = f'logits{i}'
if key in lm_output:
logits_parts.append(torch.from_numpy(lm_output[key]))
logits = torch.cat(logits_parts, dim=-1)
else:
logits = torch.from_numpy(lm_output['output_logits'])
if temperature > 0:
logits = logits / temperature
probs = F.softmax(logits[0, -1, :], dim=-1)
next_token = torch.multinomial(probs, num_samples=1).item()
else:
next_token = torch.argmax(logits[0, -1, :]).item()
return next_token
def create_unified_state(ffn_models, context_length):
"""Create unified KV cache state for transformer."""
if isinstance(ffn_models[0], dict):
# Use first FFN model's prefill function to create state
state = ffn_models[0]['prefill'].make_state()
print(f"\nCreated unified transformer state for {len(ffn_models)} chunks")
return state
else:
state = ffn_models[0].make_state()
print("\nCreated unified transformer state")
return state
def get_user_input():
sys.stdout.write(f"\n{LIGHT_GREEN}You:{RESET_COLOR} ")
sys.stdout.flush()
line = sys.stdin.readline()
if not line:
raise EOFError
return line.rstrip('\n')
def chat_loop(embed_model, ffn_models, lmhead_model, tokenizer, metadata, state, auto_prompt=None, warmup=False):
"""Interactive chat loop."""
context_length = metadata.get('context_length')
batch_size = metadata.get('batch_size', 64)
if not warmup:
print(f"\nUsing context length: {context_length}")
print("\nStarting chat session. Press Ctrl+D to exit.")
print("Type your message and press Enter to chat.")
# Keep track of conversation history
conversation = []
try:
while True:
try:
if not warmup:
print(f"\n{LIGHT_GREEN}You:{RESET_COLOR}", end=' ', flush=True)
if auto_prompt is not None:
user_input = auto_prompt
if not warmup:
print(user_input)
else:
user_input = input().strip()
except EOFError:
if not warmup:
print("\nExiting chat...")
break
if not user_input:
continue
# Add user message to conversation
conversation.append({"role": "user", "content": user_input})
# Format using chat template with full history
base_input_ids = tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True
).to(torch.int32)
# Check if we need to trim history
while base_input_ids.size(1) > context_length - 100: # Leave room for response
# Remove oldest message pair (user + assistant)
if len(conversation) > 2:
conversation = conversation[2:] # Remove oldest pair
base_input_ids = tokenizer.apply_chat_template(
conversation,
return_tensors="pt",
add_generation_prompt=True
).to(torch.int32)
else:
# If only current message remains and still too long, truncate
base_input_ids = base_input_ids[:, -context_length//2:]
break
context_pos = base_input_ids.size(1)
# Pad sequence to context_size
input_ids = F.pad(
base_input_ids,
(0, context_length - context_pos),
value=0
)
if not warmup:
print(f"\n{LIGHT_BLUE}Assistant:{RESET_COLOR}", end=' ', flush=True)
# Initialize token printer and collect response
token_printer = TokenPrinter(tokenizer)
response_tokens = []
generation_start_time = time.time()
try:
# Create initial causal mask
causal_mask = make_causal_mask(context_length, 0)
causal_mask = torch.tensor(causal_mask, dtype=torch.float16)
# Run prefill on entire context
current_pos = run_prefill(
embed_model,
ffn_models,
input_ids,
context_pos,
context_length,
batch_size,
state
)
#print(f"\n[DEBUG] After initial prefill - current_pos: {current_pos}")
# Generation loop
pos = context_pos
tokens_generated = 0
inference_start = time.time() # Start inference timing
while True:
# Check if we need to shift window
if pos >= context_length - 2:
# Calculate shift to maintain full batches
batch_size = metadata.get('batch_size', 64)
# Calculate max batches that fit in context
max_batches = context_length // batch_size
desired_batches = max(1, max_batches - 2) # Leave room for new tokens
new_size = min(desired_batches * batch_size, context_length - batch_size)
# Create shifted input_ids
tmp = torch.zeros((1, context_length), dtype=torch.int32)
tmp[:,0:new_size] = input_ids[:,pos-new_size:pos]
input_ids = tmp
# Reset state and run prefill
# keep the same state
#state = create_unified_state(ffn_models, context_length)
current_pos = run_prefill(
embed_model,
ffn_models,
input_ids,
new_size, # Prefill the entire shifted content
context_length,
batch_size,
state
)
# Start generating from the next position
pos = new_size # Don't back up, continue from where we left off
#print(f"\n[DEBUG] After shift - next token will be at pos {pos}")
#print(f"[DEBUG] Context before next token: {tokenizer.decode(input_ids[0, pos-40:pos])}")
window_shifted = True
# Generate next token
next_token = generate_next_token(
embed_model,
ffn_models,
lmhead_model,
input_ids,
pos,
context_length,
state
)
# Add token
input_ids[0, pos] = next_token
if not warmup:
token_printer.add_token(next_token)
token_printer.drain_buffer()
response_tokens.append(next_token)
pos += 1
tokens_generated += 1
# In warmup mode, limit tokens
if warmup and tokens_generated >= WARMUP_TOKEN_LIMIT:
break
if next_token == tokenizer.eos_token_id:
break
inference_time = time.time() - inference_start # Calculate inference time
# Add assistant response to conversation
response_text = token_printer.stop()
conversation.append({"role": "assistant", "content": response_text})
# Print stats only if not in warmup
if not warmup:
total_time = time.time() - generation_start_time
prefill_time = total_time - inference_time
inference_tokens_per_sec = len(response_tokens) / inference_time if inference_time > 0 else 0
prefill_ms = prefill_time * 1000
prefill_tokens_per_sec = context_pos / prefill_time if prefill_time > 0 else 0
print(f"{DARK_BLUE}{inference_tokens_per_sec:.1f} t/s, "
f"TTFT: {prefill_ms:.1f}ms ({prefill_tokens_per_sec:.1f} t/s), "
f"{len(response_tokens)} tokens{RESET_COLOR}")
if auto_prompt is not None:
break
except KeyboardInterrupt:
if not warmup:
print("\nGeneration interrupted")
token_printer.stop()
continue
except Exception as e:
if not warmup:
print(f"\nError in chat loop: {str(e)}")
import traceback
traceback.print_exc()
def main():
parser = argparse.ArgumentParser(description='Full Chat with CoreML LLaMA with context window shifting (c) 2025 Anemll')
# Add meta.yaml option
parser.add_argument('--meta', type=str, help='Path to meta.yaml to load all parameters')
# Add existing arguments
parser.add_argument('--d', '--dir', type=str, default='.',
help='Directory containing model files (default: current directory)')
parser.add_argument('--embed', type=str, required=False,
help='Path to embeddings model (relative to --dir)')
parser.add_argument('--ffn', type=str, required=False,
help='Path to FFN model (can be chunked, relative to --dir)')
parser.add_argument('--lmhead', type=str, required=False,
help='Path to LM head model (relative to --dir)')
parser.add_argument('--tokenizer', type=str, required=False,
help='Path to tokenizer')
# Add new argument for auto-generation
parser.add_argument('--prompt', type=str,
help='If specified, run once with this prompt and exit')
# Model configuration
parser.add_argument('--context-length', type=int,
help='Context length for the model (default: 512), if not provided, it will be detected from the model directory name ctxNUMBER')
args = parser.parse_args()
# If meta.yaml is provided, load parameters from it
if args.meta:
try:
with open(args.meta, 'r') as f:
meta = yaml.safe_load(f)
params = meta['model_info']['parameters']
# Set model directory to meta.yaml directory if not specified
if not args.d or args.d == '.':
args.d = str(Path(args.meta).parent)
# Build model paths based on parameters
prefix = params.get('model_prefix', 'llama') # Default to 'llama' if not specified
lut_ffn = f"_lut{params['lut_ffn']}" if params['lut_ffn'] != 'none' else ''
lut_lmhead = f"_lut{params['lut_lmhead']}" if params['lut_lmhead'] != 'none' else ''
num_chunks = int(params['num_chunks'])
# Set model paths if not specified
if not args.embed:
args.embed = f'{prefix}_embeddings'
if not args.lmhead:
args.lmhead = f'{prefix}_lm_head{lut_lmhead}'
if not args.ffn:
args.ffn = f'{prefix}_FFN_PF{lut_ffn}_chunk_01of{num_chunks:02d}'
if not args.tokenizer:
args.tokenizer = args.d
# Set other parameters
args.context_length = int(params['context_length'])
args.batch_size = int(params['batch_size'])
args.num_chunks = num_chunks
print(f"\nLoaded parameters from {args.meta}:")
print(f" Context Length: {args.context_length}")
print(f" Batch Size: {args.batch_size}")
print(f" Num Chunks: {args.num_chunks}")
print(f" Models Directory: {args.d}")
print(f" Embeddings: {args.embed}")
print(f" LM Head: {args.lmhead}")
print(f" FFN: {args.ffn}")
except Exception as e:
print(f"\nError loading meta.yaml: {str(e)}")
sys.exit(1)
# Convert directory to absolute path
model_dir = Path(args.d).resolve()
if not model_dir.exists():
print(f"\nError: Model directory not found: {model_dir}")
return 1
print(f"\nUsing model directory: {model_dir}")
print(f"Context length: {args.context_length}")
try:
# Update paths to be relative to model directory
args.embed = str(model_dir / args.embed)
args.ffn = str(model_dir / args.ffn)
args.lmhead = str(model_dir / args.lmhead)
# Handle tokenizer path separately since it's not relative to model_dir
if args.tokenizer is None:
args.tokenizer = str(model_dir)
if not Path(args.tokenizer).exists():
print(f"\nError: Tokenizer directory not found: {args.tokenizer}")
return 1
args.tokenizer = str(Path(args.tokenizer).resolve()) # Convert to absolute path
print(f"Using tokenizer path: {args.tokenizer}")
metadata = {}
# Load models and extract metadata
embed_model, ffn_models, lmhead_model, metadata = load_models(args,metadata)
print(f"\nMetadata befor args.context_length: {metadata}")
# Override context length from command line if provided
if args.context_length is not None:
metadata['context_length'] = args.context_length
metadata['state_length'] = args.context_length # Also update state_length
print(f"\nOverriding context length from command line: {args.context_length}")
print(f"\nMetadata after load_models: {metadata}")
# Load tokenizer with resolved path
tokenizer = initialize_tokenizer(args.tokenizer)
if tokenizer is None:
raise RuntimeError("Failed to initialize tokenizer")
# Create unified state once
state = create_unified_state(ffn_models, metadata['context_length'])
# Warmup runs to prevent Python GIL issues with CoreML !
for i in range(2):
chat_loop(
embed_model=embed_model,
ffn_models=ffn_models,
lmhead_model=lmhead_model,
tokenizer=tokenizer,
metadata=metadata,
state=state, # Pass the state
warmup=True,
auto_prompt="who are you?"
)
# Main run
chat_loop(
embed_model=embed_model,
ffn_models=ffn_models,
lmhead_model=lmhead_model,
tokenizer=tokenizer,
metadata=metadata,
state=state, # Pass the state
warmup=False,
auto_prompt=args.prompt
)
except Exception as e:
print(f"\nError: {str(e)}")
import traceback
traceback.print_exc()
return 1
return 0
if __name__ == "__main__":
exit(main())