YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Usage
Clone repo
git clone https://github.com/nguyenhoanganh2002/XTTSv2-Finetuning-for-New-Languages.git
cd XTTSv2-Finetuning-for-New-Languages
pip install -r requirements.txt
Pull model's weights
from huggingface_hub import snapshot_download
snapshot_download(repo_id="anhnh2002/vnTTS",
repo_type="model",
local_dir="model/")
Load model
from pprint import pprint
import torch
import torchaudio
from tqdm import tqdm
from underthesea import sent_tokenize
from vinorm import TTSnorm
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
device = "cuda:0"
xtts_checkpoint = "model/model.pth"
xtts_config = "model/config.json"
xtts_vocab = "model/vocab.json"
config = XttsConfig()
config.load_json(xtts_config)
XTTS_MODEL = Xtts.init_from_config(config)
XTTS_MODEL.load_checkpoint(config,
checkpoint_path=xtts_checkpoint,
vocab_path=xtts_vocab,
use_deepspeed=False)
XTTS_MODEL.to(device)
Preprocessing and chunking
def preprocess_text(text, language="vi"):
if language == "vi":
text = TTSnorm(text, unknown=False, lower=False, rule=True)
# split text into sentences
if language in ["ja", "zh-cn"]:
sentences = text.split("。")
else:
sentences = sent_tokenize(text)
chunks = []
chunk_i = ""
len_chunk_i = 0
for sentence in sentences:
chunk_i += " " + sentence
len_chunk_i += len(sentence.split())
if len_chunk_i > 30:
chunks.append(chunk_i.strip())
chunk_i = ""
len_chunk_i = 0
if (len(chunks) > 0) and (len_chunk_i < 15):
chunks[-1] += chunk_i
else:
chunks.append(chunk_i)
return chunks
Generate latent embeddings for the speaker
speaker_audio_file = "model/vi_man.wav"
gpt_cond_latent, speaker_embedding = XTTS_MODEL.get_conditioning_latents(
audio_path=speaker_audio_file,
gpt_cond_len=XTTS_MODEL.config.gpt_cond_len,
max_ref_length=XTTS_MODEL.config.max_ref_len,
sound_norm_refs=XTTS_MODEL.config.sound_norm_refs,
)
Inference
def tts(
model: Xtts,
text: str,
language: str,
gpt_cond_latent: torch.Tensor,
speaker_embedding: torch.Tensor,
verbose: bool = False,
):
# preprocess text
chunks = preprocess_text(text, language)
wav_chunks = []
for text in tqdm(chunks):
if text.strip() == "":
continue
wav_chunk = model.inference(
text=text,
language=language,
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
length_penalty=1.0,
repetition_penalty=10.0,
top_k=10,
top_p=0.5,
)
wav_chunk["wav"] = torch.tensor(wav_chunk["wav"])
wav_chunks.append(wav_chunk["wav"])
out_wav = torch.cat(wav_chunks, dim=0).unsqueeze(0).cpu()
return out_wav
from IPython.display import Audio
audio = tts(
model=XTTS_MODEL,
text="Xin chào, tôi là một hệ thống chuyển đổi văn bản tiếng Việt thành giọng nói.", #Hello, I am a Vietnamese text to speech conversion system.
language="vi",
gpt_cond_latent=gpt_cond_latent,
speaker_embedding=speaker_embedding,
verbose=True,
)
Audio(audio, rate=24000)
License
This project uses a model licensed under the Coqui Public Model License 1.0.0, which permits non-commercial use only. This includes personal research, testing, and charitable purposes. Commercial entities may use it for non-commercial research and evaluation. Revenue-generating activities are prohibited. Users must include the license terms when distributing the model or its outputs. For full details, please refer to: https://coqui.ai/cpml
- Downloads last month
- 72