Edit model card

distilgpt2-finetuned-ner

This model is a fine-tuned version of distilbert/distilgpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4074
  • 0 Precision: 0.9557
  • 0 Recall: 0.8738
  • 0 F1-score: 0.9129
  • 1 Precision: 0.6128
  • 1 Recall: 0.8971
  • 1 F1-score: 0.7282
  • 2 Precision: 0.4667
  • 2 Recall: 0.6272
  • 2 F1-score: 0.5352
  • 3 Precision: 0.6606
  • 3 Recall: 0.7742
  • 3 F1-score: 0.7129
  • Accuracy: 0.8577
  • Macro avg Precision: 0.6739
  • Macro avg Recall: 0.7931
  • Macro avg F1-score: 0.7223
  • Weighted avg Precision: 0.8827
  • Weighted avg Recall: 0.8577
  • Weighted avg F1-score: 0.8656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss 0 Precision 0 Recall 0 F1-score 1 Precision 1 Recall 1 F1-score 2 Precision 2 Recall 2 F1-score 3 Precision 3 Recall 3 F1-score Accuracy Macro avg Precision Macro avg Recall Macro avg F1-score Weighted avg Precision Weighted avg Recall Weighted avg F1-score
No log 1.0 67 0.7625 0.9807 0.6141 0.7553 0.4507 0.9242 0.6059 0.1833 0.7455 0.2942 0.3184 0.6280 0.4226 0.6479 0.4833 0.7279 0.5195 0.8510 0.6479 0.6977
No log 2.0 134 0.5560 0.9828 0.6673 0.7949 0.4835 0.9278 0.6357 0.2298 0.7634 0.3532 0.3942 0.7892 0.5258 0.7032 0.5226 0.7870 0.5774 0.8631 0.7032 0.7419
No log 3.0 201 0.5080 0.9905 0.6402 0.7778 0.4718 0.9531 0.6312 0.2308 0.8100 0.3593 0.3957 0.8409 0.5382 0.6896 0.5222 0.8110 0.5766 0.8684 0.6896 0.7291
No log 4.0 268 0.4785 0.9840 0.7067 0.8226 0.4939 0.9549 0.6511 0.2580 0.8100 0.3913 0.4923 0.8215 0.6156 0.7413 0.5571 0.8233 0.6202 0.8734 0.7413 0.7736
No log 5.0 335 0.4872 0.9877 0.6839 0.8082 0.5178 0.9440 0.6688 0.2810 0.7885 0.4143 0.3887 0.8860 0.5403 0.7260 0.5438 0.8256 0.6079 0.8719 0.7260 0.7592
No log 6.0 402 0.4646 0.9873 0.7051 0.8227 0.5303 0.9477 0.6801 0.2845 0.8136 0.4215 0.4304 0.8839 0.5789 0.7441 0.5581 0.8376 0.6258 0.8758 0.7441 0.7748
No log 7.0 469 0.4540 0.9866 0.7006 0.8193 0.5122 0.9495 0.6654 0.2659 0.8387 0.4038 0.4656 0.8581 0.6036 0.7398 0.5576 0.8367 0.6230 0.8755 0.7398 0.7719
0.6085 8.0 536 0.4723 0.9839 0.7255 0.8352 0.5019 0.9549 0.6580 0.2909 0.8029 0.4271 0.4913 0.8473 0.6219 0.7578 0.5670 0.8326 0.6355 0.8754 0.7578 0.7862
0.6085 9.0 603 0.4998 0.9777 0.7716 0.8625 0.5286 0.9495 0.6791 0.3279 0.7921 0.4638 0.5496 0.8215 0.6586 0.7916 0.5960 0.8337 0.6660 0.8787 0.7916 0.8141
0.6085 10.0 670 0.4960 0.9867 0.7176 0.8309 0.5358 0.9458 0.6841 0.2789 0.8136 0.4154 0.4576 0.8710 0.6 0.7529 0.5647 0.8370 0.6326 0.8776 0.7529 0.7829
0.6085 11.0 737 0.5292 0.9760 0.7870 0.8713 0.5425 0.9440 0.6891 0.3302 0.7563 0.4597 0.5712 0.8280 0.6760 0.8023 0.6050 0.8288 0.6740 0.8802 0.8023 0.8231
0.6085 12.0 804 0.5283 0.9778 0.7666 0.8594 0.5438 0.9296 0.6862 0.3135 0.7563 0.4433 0.5130 0.8495 0.6397 0.7864 0.5870 0.8255 0.6571 0.8768 0.7864 0.8100
0.6085 13.0 871 0.5510 0.9793 0.7678 0.8608 0.5409 0.9422 0.6873 0.3107 0.7706 0.4428 0.5307 0.8366 0.6494 0.7882 0.5904 0.8293 0.6601 0.8789 0.7882 0.8118
0.6085 14.0 938 0.5859 0.9751 0.7913 0.8737 0.5610 0.9296 0.6997 0.3303 0.7742 0.4630 0.5641 0.8237 0.6696 0.8050 0.6076 0.8297 0.6765 0.8806 0.8050 0.8255
0.2627 15.0 1005 0.6114 0.9770 0.7811 0.8681 0.5360 0.9404 0.6828 0.3392 0.7563 0.4684 0.5418 0.8366 0.6577 0.7979 0.5985 0.8286 0.6692 0.8787 0.7979 0.8190
0.2627 16.0 1072 0.6434 0.9761 0.7747 0.8638 0.5407 0.9350 0.6852 0.3518 0.7276 0.4743 0.4913 0.8516 0.6231 0.7923 0.5900 0.8222 0.6616 0.8752 0.7923 0.8135
0.2627 17.0 1139 0.6766 0.9729 0.7939 0.8743 0.5558 0.9350 0.6972 0.3577 0.7204 0.4780 0.5313 0.8387 0.6505 0.8063 0.6044 0.8220 0.6750 0.8772 0.8063 0.8251
0.2627 18.0 1206 0.7459 0.9672 0.8159 0.8851 0.5644 0.9260 0.7013 0.3752 0.6953 0.4874 0.5762 0.8215 0.6773 0.8206 0.6207 0.8147 0.6878 0.8774 0.8206 0.8364
0.2627 19.0 1273 0.7824 0.9682 0.8301 0.8938 0.5644 0.9332 0.7034 0.3808 0.7097 0.4956 0.6364 0.7978 0.7080 0.8314 0.6374 0.8177 0.7002 0.8829 0.8314 0.8461
0.2627 20.0 1340 0.7763 0.9667 0.8261 0.8909 0.5615 0.9314 0.7006 0.3845 0.6918 0.4942 0.6127 0.8065 0.6964 0.8280 0.6313 0.8139 0.6955 0.8799 0.8280 0.8427
0.2627 21.0 1407 0.7584 0.9694 0.8155 0.8858 0.5683 0.9242 0.7038 0.3736 0.7312 0.4945 0.5826 0.8194 0.6810 0.8215 0.6235 0.8225 0.6913 0.8800 0.8215 0.8378
0.2627 22.0 1474 0.8247 0.9684 0.8232 0.8899 0.5617 0.9278 0.6998 0.3886 0.7061 0.5013 0.5962 0.8129 0.6879 0.8264 0.6287 0.8175 0.6947 0.8802 0.8264 0.8415
0.1736 23.0 1541 0.7862 0.9692 0.8163 0.8862 0.5709 0.9224 0.7053 0.3704 0.7168 0.4884 0.5794 0.8237 0.6803 0.8217 0.6225 0.8198 0.6900 0.8797 0.8217 0.8379
0.1736 24.0 1608 0.9049 0.9655 0.8356 0.8959 0.5781 0.9224 0.7107 0.3987 0.6774 0.5020 0.6097 0.8129 0.6968 0.8346 0.6380 0.8121 0.7013 0.8808 0.8346 0.8479
0.1736 25.0 1675 0.9058 0.9677 0.8293 0.8932 0.5872 0.9242 0.7181 0.3962 0.6703 0.4980 0.5672 0.8258 0.6725 0.8303 0.6296 0.8124 0.6954 0.8801 0.8303 0.8444
0.1736 26.0 1742 0.9049 0.9667 0.8258 0.8907 0.5548 0.9314 0.6954 0.384 0.6882 0.4929 0.6215 0.8086 0.7028 0.8277 0.6317 0.8135 0.6955 0.8799 0.8277 0.8424
0.1736 27.0 1809 1.0230 0.9629 0.8477 0.9017 0.584 0.9224 0.7152 0.4114 0.6487 0.5035 0.6361 0.8043 0.7104 0.8423 0.6486 0.8058 0.7077 0.8818 0.8423 0.8539
0.1736 28.0 1876 0.9487 0.9654 0.8398 0.8982 0.5746 0.9242 0.7087 0.4043 0.6667 0.5034 0.6231 0.8108 0.7047 0.8374 0.6419 0.8104 0.7037 0.8817 0.8374 0.8502
0.1736 29.0 1943 0.9729 0.9661 0.8347 0.8956 0.5805 0.9242 0.7131 0.4021 0.6774 0.5047 0.5978 0.8151 0.6897 0.8341 0.6366 0.8128 0.7008 0.8808 0.8341 0.8474
0.1305 30.0 2010 1.0135 0.9636 0.8487 0.9025 0.5939 0.9188 0.7215 0.4102 0.6631 0.5068 0.6324 0.8065 0.7089 0.8436 0.6500 0.8093 0.7099 0.8828 0.8436 0.8552
0.1305 31.0 2077 1.0109 0.9618 0.8455 0.8999 0.5670 0.9242 0.7028 0.4184 0.6523 0.5098 0.6462 0.7935 0.7124 0.8401 0.6483 0.8039 0.7062 0.8804 0.8401 0.8519
0.1305 32.0 2144 1.0659 0.9627 0.8517 0.9038 0.5995 0.9134 0.7239 0.4201 0.6595 0.5132 0.6210 0.8 0.6992 0.8448 0.6508 0.8061 0.7100 0.8822 0.8448 0.8560
0.1305 33.0 2211 1.0779 0.9600 0.8554 0.9047 0.6002 0.9079 0.7227 0.4293 0.6416 0.5144 0.6229 0.7957 0.6988 0.8462 0.6531 0.8002 0.7101 0.8807 0.8462 0.8566
0.1305 34.0 2278 1.2438 0.9552 0.8732 0.9124 0.6053 0.9079 0.7264 0.4898 0.6022 0.5402 0.6505 0.7806 0.7097 0.8576 0.6752 0.7910 0.7222 0.8820 0.8576 0.8650
0.1305 35.0 2345 1.1222 0.9609 0.8602 0.9077 0.5955 0.9116 0.7204 0.4312 0.6631 0.5226 0.6588 0.7806 0.7146 0.8502 0.6616 0.8039 0.7163 0.8837 0.8502 0.8604
0.1305 36.0 2412 1.2303 0.9577 0.8687 0.9110 0.5946 0.9188 0.7220 0.4699 0.6165 0.5333 0.6648 0.7806 0.7181 0.8555 0.6718 0.7961 0.7211 0.8832 0.8555 0.8638
0.1305 37.0 2479 1.1387 0.9603 0.8507 0.9021 0.5886 0.9116 0.7153 0.4189 0.6667 0.5145 0.6353 0.7828 0.7013 0.8429 0.6508 0.8029 0.7083 0.8803 0.8429 0.8541
0.1036 38.0 2546 1.2204 0.9585 0.8623 0.9079 0.5988 0.9025 0.7199 0.4458 0.6344 0.5237 0.6387 0.7871 0.7052 0.8503 0.6605 0.7966 0.7142 0.8812 0.8503 0.8598
0.1036 39.0 2613 1.2219 0.9594 0.8594 0.9066 0.5950 0.9097 0.7195 0.4512 0.6129 0.5198 0.6210 0.8 0.6992 0.8486 0.6567 0.7955 0.7113 0.8805 0.8486 0.8581
0.1036 40.0 2680 1.2658 0.9567 0.8691 0.9108 0.5948 0.9061 0.7182 0.4534 0.6272 0.5263 0.6761 0.7720 0.7209 0.8546 0.6702 0.7936 0.7190 0.8825 0.8546 0.8632
0.1036 41.0 2747 1.1926 0.9607 0.8560 0.9053 0.6017 0.9079 0.7237 0.4180 0.6487 0.5084 0.6397 0.7978 0.7100 0.8472 0.6550 0.8026 0.7119 0.8821 0.8472 0.8578
0.1036 42.0 2814 1.2121 0.9590 0.8602 0.9069 0.5986 0.8989 0.7186 0.4414 0.6344 0.5206 0.6314 0.7957 0.7041 0.8489 0.6576 0.7973 0.7125 0.8809 0.8489 0.8587
0.1036 43.0 2881 1.2253 0.9597 0.8572 0.9056 0.5899 0.9061 0.7146 0.4490 0.6308 0.5246 0.6252 0.8 0.7019 0.8473 0.6559 0.7985 0.7117 0.8806 0.8473 0.8573
0.1036 44.0 2948 1.2930 0.9572 0.8705 0.9117 0.6098 0.8971 0.7261 0.4534 0.6272 0.5263 0.6595 0.7871 0.7176 0.8560 0.6699 0.7955 0.7204 0.8830 0.8560 0.8644
0.0887 45.0 3015 1.2525 0.9584 0.8612 0.9072 0.5969 0.9116 0.7214 0.4456 0.6308 0.5223 0.6386 0.7828 0.7034 0.8497 0.6599 0.7966 0.7136 0.8810 0.8497 0.8592
0.0887 46.0 3082 1.3334 0.9556 0.8720 0.9119 0.6014 0.9043 0.7224 0.4751 0.6165 0.5367 0.6606 0.7742 0.7129 0.8565 0.6732 0.7918 0.7210 0.8820 0.8565 0.8643
0.0887 47.0 3149 1.3047 0.9584 0.8667 0.9103 0.6031 0.9025 0.7231 0.4490 0.6308 0.5246 0.6542 0.7892 0.7154 0.8538 0.6662 0.7973 0.7183 0.8828 0.8538 0.8627
0.0887 48.0 3216 1.3094 0.9581 0.8677 0.9106 0.6022 0.9043 0.7229 0.4492 0.6344 0.5260 0.6594 0.7785 0.7140 0.8541 0.6672 0.7962 0.7184 0.8828 0.8541 0.8630
0.0887 49.0 3283 1.3583 0.9574 0.8712 0.9123 0.6121 0.8971 0.7277 0.4504 0.6344 0.5268 0.6624 0.7806 0.7167 0.8565 0.6706 0.7959 0.7209 0.8834 0.8565 0.8650
0.0887 50.0 3350 1.3429 0.9579 0.8643 0.9087 0.6105 0.9025 0.7283 0.4447 0.6344 0.5229 0.6330 0.7828 0.7000 0.8516 0.6615 0.7960 0.7150 0.8813 0.8516 0.8608
0.0887 51.0 3417 1.3133 0.9598 0.8633 0.9090 0.6043 0.9097 0.7262 0.4403 0.6344 0.5198 0.6421 0.7871 0.7072 0.8517 0.6616 0.7986 0.7156 0.8827 0.8517 0.8612
0.0887 52.0 3484 1.3570 0.9562 0.8722 0.9123 0.6116 0.8953 0.7267 0.4531 0.6237 0.5249 0.6600 0.7763 0.7134 0.8563 0.6702 0.7919 0.7193 0.8824 0.8563 0.8645
0.0787 53.0 3551 1.4055 0.9560 0.8768 0.9147 0.6091 0.8971 0.7255 0.4822 0.6308 0.5466 0.6716 0.7742 0.7193 0.8602 0.6797 0.7947 0.7265 0.8841 0.8602 0.8677
0.0787 54.0 3618 1.3776 0.9576 0.8718 0.9127 0.6148 0.8989 0.7302 0.4571 0.6308 0.5301 0.6565 0.7849 0.7150 0.8573 0.6715 0.7966 0.7220 0.8837 0.8573 0.8655
0.0787 55.0 3685 1.3579 0.9590 0.8655 0.9099 0.6065 0.9043 0.7261 0.4552 0.6380 0.5313 0.6376 0.7871 0.7045 0.8532 0.6646 0.7987 0.7180 0.8826 0.8532 0.8622
0.0787 56.0 3752 1.4072 0.9563 0.8746 0.9136 0.6151 0.8971 0.7298 0.4684 0.6380 0.5402 0.6661 0.7763 0.7170 0.8590 0.6765 0.7965 0.7252 0.8839 0.8590 0.8668
0.0787 57.0 3819 1.3831 0.9570 0.8718 0.9124 0.6141 0.8989 0.7297 0.4524 0.6308 0.5269 0.6606 0.7785 0.7147 0.8568 0.6710 0.7950 0.7209 0.8833 0.8568 0.8651
0.0787 58.0 3886 1.4017 0.9565 0.8734 0.9131 0.6159 0.8971 0.7303 0.4607 0.6308 0.5325 0.6588 0.7763 0.7127 0.8577 0.6730 0.7944 0.7222 0.8832 0.8577 0.8658
0.0787 59.0 3953 1.3982 0.9564 0.8728 0.9127 0.6133 0.8989 0.7291 0.4630 0.6272 0.5327 0.6582 0.7785 0.7133 0.8574 0.6727 0.7944 0.7220 0.8830 0.8574 0.8654
0.0739 60.0 4020 1.4074 0.9557 0.8738 0.9129 0.6128 0.8971 0.7282 0.4667 0.6272 0.5352 0.6606 0.7742 0.7129 0.8577 0.6739 0.7931 0.7223 0.8827 0.8577 0.8656

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
1
Safetensors
Model size
81.9M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for antoineedy/distilgpt2-finetuned-ner

Finetuned
(550)
this model