pipeline_tag: sentence-similarity
language: fr
license: mit
datasets:
- unicamp-dl/mmarco
metrics:
- recall
tags:
- passage-retrieval
library_name: sentence-transformers
base_model: nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large
model-index:
- name: biencoder-mMiniLMv2-L6-mmarcoFR
results:
- task:
type: sentence-similarity
name: Passage Retrieval
dataset:
type: unicamp-dl/mmarco
name: mMARCO-fr
config: french
split: validation
metrics:
- type: recall_at_500
name: Recall@500
value: 79.8
- type: recall_at_100
name: Recall@100
value: 66.8
- type: recall_at_10
name: Recall@10
value: 41.3
- type: map_at_10
name: MAP@10
value: 21.8
- type: ndcg_at_10
name: nDCG@10
value: 26.6
- type: mrr_at_10
name: MRR@10
value: 22.3
biencoder-mMiniLMv2-L6-mmarcoFR
This is a dense single-vector bi-encoder model for French that can be used for semantic search. The model maps queries and passages to 384-dimensional dense vectors which are used to compute relevance through cosine similarity.
Usage
Here are some examples for using the model with Sentence-Transformers, FlagEmbedding, or Huggingface Transformers.
Using Sentence-Transformers
Start by installing the library: pip install -U sentence-transformers
. Then, you can use the model like this:
from sentence_transformers import SentenceTransformer
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
model = SentenceTransformer('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
similarity = q_embeddings @ p_embeddings.T
print(similarity)
Using FlagEmbedding
Start by installing the library: pip install -U FlagEmbedding
. Then, you can use the model like this:
from FlagEmbedding import FlagModel
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
model = FlagModel('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
q_embeddings = model.encode(queries, normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
similarity = q_embeddings @ p_embeddings.T
print(similarity)
Using Transformers
Start by installing the library: pip install -U transformers
. Then, you can use the model like this:
from transformers import AutoTokenizer, AutoModel
from torch.nn.functional import normalize
def mean_pooling(model_output, attention_mask):
""" Perform mean pooling on-top of the contextualized word embeddings, while ignoring mask tokens in the mean computation."""
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
queries = ["Ceci est un exemple de requête.", "Voici un second exemple."]
passages = ["Ceci est un exemple de passage.", "Et voilà un deuxième exemple."]
tokenizer = AutoTokenizer.from_pretrained('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
model = AutoModel.from_pretrained('antoinelouis/biencoder-mMiniLMv2-L6-mmarcoFR')
q_input = tokenizer(queries, padding=True, truncation=True, return_tensors='pt')
p_input = tokenizer(passages, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
q_output = model(**encoded_queries)
p_output = model(**encoded_passages)
q_embeddings = mean_pooling(q_output, q_input['attention_mask'])
q_embedddings = normalize(q_embeddings, p=2, dim=1)
p_embeddings = mean_pooling(p_output, p_input['attention_mask'])
p_embedddings = normalize(p_embeddings, p=2, dim=1)
similarity = q_embeddings @ p_embeddings.T
print(similarity)
Evaluation
The model is evaluated on the smaller development set of mMARCO-fr, which consists of 6,980 queries for a corpus of 8.8M candidate passages. We report the mean reciprocal rank (MRR), normalized discounted cumulative gainand (NDCG), mean average precision (MAP), and recall at various cut-offs (R@k). To see how it compares to other neural retrievers in French, check out the DécouvrIR leaderboard.
Training
Data
We use the French training samples from the mMARCO dataset, a multilingual machine-translated version of MS MARCO that contains 8.8M passages and 539K training queries. We do not employ the BM25 netaives provided by the official dataset but instead sample harder negatives mined from 12 distinct dense retrievers, using the msmarco-hard-negatives distillation dataset.
Implementation
The model is initialized from the nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large checkpoint and optimized via the cross-entropy loss (as in DPR) with a temperature of 0.05. It is fine-tuned on one 32GB NVIDIA V100 GPU for 20 epochs (i.e., 65.7k steps) using the AdamW optimizer with a batch size of 152, a peak learning rate of 2e-5 with warm up along the first 500 steps and linear scheduling. We set the maximum sequence lengths for both the questions and passages to 128 tokens. We use the cosine similarity to compute relevance scores.
Citation
@online{louis2024decouvrir,
author = 'Antoine Louis',
title = 'DécouvrIR: A Benchmark for Evaluating the Robustness of Information Retrieval Models in French',
publisher = 'Hugging Face',
month = 'mar',
year = '2024',
url = 'https://huggingface.co/spaces/antoinelouis/decouvrir',
}