XLS-R-300M - Slovak

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - SK dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3067
  • Wer: 0.2678

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 60.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.175 2.41 400 4.6909 1.0
3.3785 4.82 800 3.3080 1.0
2.6964 7.23 1200 2.0651 1.1055
1.3008 9.64 1600 0.5845 0.6207
1.1185 12.05 2000 0.4195 0.4193
1.0252 14.46 2400 0.3824 0.3570
0.935 16.87 2800 0.3693 0.3462
0.8818 19.28 3200 0.3587 0.3318
0.8534 21.69 3600 0.3420 0.3180
0.8137 24.1 4000 0.3426 0.3130
0.7968 26.51 4400 0.3349 0.3102
0.7558 28.92 4800 0.3216 0.3019
0.7313 31.33 5200 0.3451 0.3060
0.7358 33.73 5600 0.3272 0.2967
0.718 36.14 6000 0.3315 0.2882
0.6991 38.55 6400 0.3299 0.2830
0.6529 40.96 6800 0.3140 0.2836
0.6225 43.37 7200 0.3128 0.2751
0.633 45.78 7600 0.3211 0.2774
0.5876 48.19 8000 0.3162 0.2764
0.588 50.6 8400 0.3082 0.2722
0.5915 53.01 8800 0.3120 0.2681
0.5798 55.42 9200 0.3133 0.2709
0.5736 57.83 9600 0.3086 0.2676

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.0

Evaluation Commands

  1. To evaluate on mozilla-foundation/common_voice_8_0 with split test
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset mozilla-foundation/common_voice_8_0 --config sk --split test
  1. To evaluate on speech-recognition-community-v2/dev_data
python eval.py --model_id anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm --dataset speech-recognition-community-v2/dev_data --config sk --split validation --chunk_length_s 5.0 --stride_length_s 1.0

Inference With LM

import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sk", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
# => ""

Eval results on Common Voice 8 "test" (WER):

Without LM With LM (run ./eval.py)
26.707 18.609
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train anuragshas/wav2vec2-xls-r-300m-sk-cv8-with-lm

Evaluation results