whisper-large-v2-hi / README.md
anuragshas's picture
update model card README.md
df33e28
|
raw
history blame
1.75 kB
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- common_voice_11_0
metrics:
- wer
model-index:
- name: openai/whisper-large-v2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_11_0
type: common_voice_11_0
config: hi
split: test
args: hi
metrics:
- name: Wer
type: wer
value: 10.360772823001557
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# openai/whisper-large-v2
This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the common_voice_11_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2325
- Wer: 10.3608
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.0067 | 4.18 | 1000 | 0.2325 | 10.3608 |
### Framework versions
- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2