whisper-large-v2-hi / README.md
anuragshas's picture
Update metadata with huggingface_hub
bc8a05b
|
raw
history blame
2.12 kB
metadata
language:
  - hi
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Large-v2 Hindi
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0 hi
          type: mozilla-foundation/common_voice_11_0
          config: hi
          split: test
          args: hi
        metrics:
          - type: wer
            value: 10.360772823001557
            name: Wer
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: hi_in
          split: test
        metrics:
          - type: wer
            value: 13.52
            name: WER

Whisper Large-v2 Hindi

This model is a fine-tuned version of openai/whisper-large-v2 on the mozilla-foundation/common_voice_11_0 hi dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2325
  • Wer: 10.3608

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.0067 4.18 1000 0.2325 10.3608

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2