palmer

no-prompt

a sheared-llama-1.3b fine-tuning

This model uses an 1.3 billion parameters model as base to be further fine-tuned on the same data as palmer. It works pretty good and even surpasses sota model on hellaswag.

evaluation

Model ARC_C HellaSwag PIQA Winogrande
tinyllama-2t 0.2807 0.5463 0.7067 0.5683
palmer-001 0.2807 0.5524 0.7106 0.5896
sheared-1.3b 0.2910 0.5935 0.7339 0.5809
no-prompt-1.3b 0.3157 0.6022 0.7334 0.5864
falcon-rw-1b-instruct-openorca (sota) 0.3362 0.5997 0.7394 0.6148

This model was trained on less than 25% of the dataset yet achieves competitive performance to current sota on open llm leaderboard.

training

Training took ~5 P100 gpu hours. It was trained on 15,000 gpt-4 shuffled samples. no-prompt was fine-tuned using lower learning rates ensuring it keeps as much general knowledge as possible.

prompt

no prompt

limitations

Hallucinations are frequent, just as any transformer model this size.

Buy Me A Coffee

Downloads last month
34
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for appvoid/no-prompt-1.3b

Quantizations
1 model

Dataset used to train appvoid/no-prompt-1.3b