apv53-fit's picture
End of training
be5ceca verified
|
raw
history blame
2.38 kB
---
library_name: transformers
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: apv53-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.83
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# apv53-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5416
- Accuracy: 0.83
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.3
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.217 | 1.0 | 113 | 2.1703 | 0.41 |
| 1.6344 | 2.0 | 226 | 1.6105 | 0.65 |
| 1.2861 | 3.0 | 339 | 1.1849 | 0.71 |
| 0.8584 | 4.0 | 452 | 0.8745 | 0.71 |
| 0.6935 | 5.0 | 565 | 0.7215 | 0.84 |
| 0.4175 | 6.0 | 678 | 0.6174 | 0.8 |
| 0.3046 | 7.0 | 791 | 0.5329 | 0.85 |
| 0.121 | 8.0 | 904 | 0.5489 | 0.82 |
| 0.1203 | 9.0 | 1017 | 0.5513 | 0.83 |
| 0.0848 | 10.0 | 1130 | 0.5416 | 0.83 |
### Framework versions
- Transformers 4.48.0.dev0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0