arampacha's picture
Update README.md
489fec1
metadata
language:
  - hy
license: apache-2.0
tags:
  - automatic-speech-recognition
  - generated_from_trainer
  - hf-asr-leaderboard
  - hy
  - mozilla-foundation/common_voice_8_0
  - robust-speech-event
datasets:
  - common_voice
model-index:
  - name: wav2vec2-xls-r-1b-hy-cv
    results:
      - task:
          type: automatic-speech-recognition
          name: Speech Recognition
        dataset:
          type: mozilla-foundation/common_voice_8_0
          name: Common Voice hy-AM
          args: hy-AM
        metrics:
          - type: wer
            value: 10.811865729898516
            name: WER LM
          - type: cer
            value: 2.2205361659079412
            name: CER LM
      - task:
          name: Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: hy
        metrics:
          - name: Test WER
            type: wer
            value: 18.219363037089988
          - name: Test CER
            type: cer
            value: 7.075988867335752

This model is a fine-tuned version of facebook/wav2vec2-xls-r-1b on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_4/ - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1693
  • Wer: 0.2373
  • Cer: 0.0429

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 64
  • seed: 842
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
1.255 7.24 500 0.2978 0.4294 0.0758
1.0058 14.49 1000 0.1883 0.2838 0.0483
0.9371 21.73 1500 0.1813 0.2627 0.0457
0.8999 28.98 2000 0.1693 0.2373 0.0429
0.8814 36.23 2500 0.1760 0.2420 0.0435
0.8364 43.47 3000 0.1765 0.2416 0.0419
0.8019 50.72 3500 0.1758 0.2311 0.0398
0.7665 57.96 4000 0.1745 0.2240 0.0399
0.7376 65.22 4500 0.1717 0.2190 0.0385
0.716 72.46 5000 0.1700 0.2147 0.0382

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.0