videomae-base-finetuned-ucfcrime-full2
This model is a fine-tuned version of MCG-NJU/videomae-base on the UCF-CRIME dataset. code : github It achieves the following results on the evaluation set:
- Loss: 2.5014
- Accuracy: 0.225
Model description
More information needed
Intended uses & limitations
Inference using phone camera (have to download ipwebcam on phone from playstore)
import cv2
import torch
import numpy as np
from transformers import AutoImageProcessor, VideoMAEForVideoClassification
np.random.seed(0)
def preprocess_frames(frames, image_processor):
inputs = image_processor(frames, return_tensors="pt")
inputs = {k: v.to(device) for k, v in inputs.items()} # Move tensors to GPU
return inputs
# Initialize the video capture object, replace ip addr with the local ip of your phone (will be shown in the ipwebcam app)
cap = cv2.VideoCapture('http://192.168.229.98:8080/video')
# Set the frame size (optional)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
image_processor = AutoImageProcessor.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")
model = VideoMAEForVideoClassification.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")
# Move the model to GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
frame_buffer = []
buffer_size = 16
previous_labels = []
top_confidences = [] # Initialize top_confidences
while True:
ret, frame = cap.read()
if not ret:
print("Failed to capture frame")
break
# Add the current frame to the buffer
frame_buffer.append(frame)
# Check if we have enough frames for inference
if len(frame_buffer) >= buffer_size:
# Preprocess the frames
inputs = preprocess_frames(frame_buffer, image_processor)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# Get the top 3 predicted labels and their confidence scores
top_k = 3
probs = torch.softmax(logits, dim=-1)
top_probs, top_indices = torch.topk(probs, top_k)
top_labels = [model.config.id2label[idx.item()] for idx in top_indices[0]]
top_confidences = top_probs[0].tolist() # Update top_confidences
# Check if the predicted labels are different from the previous labels
if top_labels != previous_labels:
previous_labels = top_labels
print("Predicted class:", top_labels[0]) # Print the predicted class for debugging
# Clear the frame buffer and continue from the next frame
frame_buffer.clear()
# Display the predicted labels and confidence scores on the frame
for i, (label, confidence) in enumerate(zip(previous_labels, top_confidences)):
label_text = f"{label}: {confidence:.2f}"
cv2.putText(frame, label_text, (10, 30 + i * 30), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
# Display the resulting frame
cv2.imshow('Video', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release everything when done
cap.release()
cv2.destroyAllWindows()
Simple usage
Usage:
import av
import torch
import numpy as np
from transformers import AutoImageProcessor, VideoMAEForVideoClassification
from huggingface_hub import hf_hub_download
np.random.seed(0)
def read_video_pyav(container, indices):
'''
Decode the video with PyAV decoder.
Args:
container (`av.container.input.InputContainer`): PyAV container.
indices (`List[int]`): List of frame indices to decode.
Returns:
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
'''
frames = []
container.seek(0)
start_index = indices[0]
end_index = indices[-1]
for i, frame in enumerate(container.decode(video=0)):
if i > end_index:
break
if i >= start_index and i in indices:
frames.append(frame)
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
'''
Sample a given number of frame indices from the video.
Args:
clip_len (`int`): Total number of frames to sample.
frame_sample_rate (`int`): Sample every n-th frame.
seg_len (`int`): Maximum allowed index of sample's last frame.
Returns:
indices (`List[int]`): List of sampled frame indices
'''
converted_len = int(clip_len * frame_sample_rate)
end_idx = np.random.randint(converted_len, seg_len)
start_idx = end_idx - converted_len
indices = np.linspace(start_idx, end_idx, num=clip_len)
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
return indices
# video clip consists of 300 frames (10 seconds at 30 FPS)
file_path = hf_hub_download(
repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
)
# use any other video just replace `file_path` with the video path
container = av.open(file_path)
# sample 16 frames
indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
video = read_video_pyav(container, indices)
image_processor = AutoImageProcessor.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")
model = VideoMAEForVideoClassification.from_pretrained("archit11/videomae-base-finetuned-ucfcrime-full")
inputs = image_processor(list(video), return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
# model predicts one of the 13 ucf-crime classes
predicted_label = logits.argmax(-1).item()
print(model.config.id2label[predicted_label])
Inference Using
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 700
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.5836 | 0.13 | 88 | 2.4944 | 0.2080 |
2.3212 | 1.13 | 176 | 2.5855 | 0.1773 |
2.2333 | 2.13 | 264 | 2.6270 | 0.1046 |
1.985 | 3.13 | 352 | 2.4058 | 0.2109 |
2.194 | 4.13 | 440 | 2.3654 | 0.2235 |
1.9796 | 5.13 | 528 | 2.2609 | 0.2235 |
1.8786 | 6.13 | 616 | 2.2725 | 0.2341 |
1.71 | 7.12 | 700 | 2.2228 | 0.2226 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.2
- Downloads last month
- 25
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.