Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: HuggingFaceM4/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ccd7c4f721c01f59_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ccd7c4f721c01f59_train_data.json
  type:
    field_input: en
    field_instruction: gender
    field_output: es
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: ardaspear/175f28cf-bb88-41e5-9910-496310dab3be
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 72GB
max_steps: 50
micro_batch_size: 4
mlflow_experiment_name: /tmp/ccd7c4f721c01f59_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 175f28cf-bb88-41e5-9910-496310dab3be
wandb_project: Gradients-On-Two
wandb_run: your_name
wandb_runid: 175f28cf-bb88-41e5-9910-496310dab3be
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

175f28cf-bb88-41e5-9910-496310dab3be

This model is a fine-tuned version of HuggingFaceM4/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3599

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 10.3720
10.3716 0.0009 5 10.3717
10.3734 0.0018 10 10.3706
10.3706 0.0028 15 10.3690
10.3691 0.0037 20 10.3673
10.3669 0.0046 25 10.3652
10.3669 0.0055 30 10.3632
10.3614 0.0065 35 10.3615
10.3644 0.0074 40 10.3604
10.3607 0.0083 45 10.3600
10.3592 0.0092 50 10.3599

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
62
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ardaspear/175f28cf-bb88-41e5-9910-496310dab3be

Adapter
(130)
this model