Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: NousResearch/CodeLlama-7b-hf
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 2d65dd6f40627bcf_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/2d65dd6f40627bcf_train_data.json
  type:
    field_input: context
    field_instruction: eval_question
    field_output: eval_whole_desc
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: ardaspear/61bf836b-f9a1-4a99-9992-ab563d3d5019
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/2d65dd6f40627bcf_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 6af5244c-aed5-4f81-9d26-1a9113b2f185
wandb_project: Gradients-On-Five
wandb_run: your_name
wandb_runid: 6af5244c-aed5-4f81-9d26-1a9113b2f185
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

61bf836b-f9a1-4a99-9992-ab563d3d5019

This model is a fine-tuned version of NousResearch/CodeLlama-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7428

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0015 1 2.4453
9.5736 0.0074 5 2.4414
9.7514 0.0147 10 2.3896
9.1795 0.0221 15 2.2163
8.6175 0.0294 20 2.0440
7.9879 0.0368 25 1.9181
7.2887 0.0441 30 1.8392
7.1466 0.0515 35 1.7864
6.8959 0.0588 40 1.7566
7.0053 0.0662 45 1.7448
6.9776 0.0736 50 1.7428

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
10
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ardaspear/61bf836b-f9a1-4a99-9992-ab563d3d5019

Adapter
(157)
this model