arielcerdap's picture
End of training
8c4966c verified
|
raw
history blame
2.61 kB
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
results:
- task:
name: Audio Classification
type: audio-classification
dataset:
name: GTZAN
type: marsyas/gtzan
config: all
split: train
args: all
metrics:
- name: Accuracy
type: accuracy
value: 0.86
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilhubert-finetuned-gtzan
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5678
- Accuracy: 0.86
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.2153 | 1.0 | 57 | 2.1306 | 0.37 |
| 1.5998 | 2.0 | 114 | 1.5355 | 0.59 |
| 1.2268 | 3.0 | 171 | 1.1801 | 0.7 |
| 0.8839 | 4.0 | 228 | 1.0267 | 0.68 |
| 0.8058 | 5.0 | 285 | 0.8348 | 0.77 |
| 0.6722 | 6.0 | 342 | 0.7497 | 0.78 |
| 0.6603 | 7.0 | 399 | 0.6921 | 0.78 |
| 0.4026 | 8.0 | 456 | 0.6814 | 0.8 |
| 0.3244 | 9.0 | 513 | 0.6138 | 0.81 |
| 0.2639 | 10.0 | 570 | 0.5887 | 0.85 |
| 0.1619 | 11.0 | 627 | 0.6005 | 0.83 |
| 0.1652 | 12.0 | 684 | 0.5589 | 0.83 |
| 0.1354 | 13.0 | 741 | 0.6157 | 0.8 |
| 0.0821 | 14.0 | 798 | 0.6221 | 0.83 |
| 0.1009 | 15.0 | 855 | 0.5678 | 0.86 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1