arthurmluz's picture
Model save
f2f2b44
|
raw
history blame
4.5 kB
metadata
license: mit
base_model: arthurmluz/ptt5-wikilingua-30epochs
tags:
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: ptt5-wikilingua-temario
    results: []

ptt5-wikilingua-temario

This model is a fine-tuned version of arthurmluz/ptt5-wikilingua-30epochs on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4753
  • Rouge1: 0.0857
  • Rouge2: 0.0533
  • Rougel: 0.0749
  • Rougelsum: 0.0832
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 88 2.7296 0.0742 0.0322 0.0612 0.0713 19.0
No log 2.0 176 2.6540 0.0825 0.0406 0.0667 0.0799 19.0
2.9757 3.0 264 2.6052 0.0844 0.0446 0.0692 0.0811 19.0
2.9757 4.0 352 2.5790 0.0839 0.0454 0.0696 0.0812 19.0
2.6661 5.0 440 2.5549 0.0856 0.0463 0.0711 0.0819 19.0
2.6661 6.0 528 2.5343 0.0851 0.0479 0.0717 0.0819 19.0
2.5257 7.0 616 2.5250 0.0856 0.049 0.0734 0.0826 19.0
2.5257 8.0 704 2.5128 0.087 0.0498 0.0748 0.0842 19.0
2.5257 9.0 792 2.5042 0.0849 0.0493 0.0738 0.082 19.0
2.433 10.0 880 2.4957 0.0838 0.0486 0.0726 0.081 19.0
2.433 11.0 968 2.4922 0.0844 0.0483 0.0723 0.0815 19.0
2.3774 12.0 1056 2.4894 0.0852 0.0517 0.0737 0.0826 19.0
2.3774 13.0 1144 2.4833 0.0857 0.0523 0.0738 0.083 19.0
2.3029 14.0 1232 2.4773 0.0853 0.0524 0.0738 0.0826 19.0
2.3029 15.0 1320 2.4783 0.0854 0.0532 0.0739 0.0829 19.0
2.2314 16.0 1408 2.4806 0.086 0.0535 0.0747 0.0834 19.0
2.2314 17.0 1496 2.4788 0.0861 0.0532 0.0746 0.0833 19.0
2.2314 18.0 1584 2.4769 0.0854 0.053 0.0744 0.0829 19.0
2.1949 19.0 1672 2.4722 0.0851 0.053 0.0744 0.0825 19.0
2.1949 20.0 1760 2.4707 0.086 0.0531 0.0751 0.0831 19.0
2.1735 21.0 1848 2.4737 0.0855 0.0534 0.0751 0.0829 19.0
2.1735 22.0 1936 2.4753 0.0857 0.0533 0.0745 0.083 19.0
2.1643 23.0 2024 2.4762 0.0852 0.0534 0.0748 0.0828 19.0
2.1643 24.0 2112 2.4747 0.0854 0.0534 0.0748 0.0829 19.0
2.1276 25.0 2200 2.4746 0.0854 0.0534 0.0748 0.0829 19.0
2.1276 26.0 2288 2.4761 0.0857 0.0533 0.0749 0.0832 19.0
2.1276 27.0 2376 2.4758 0.0857 0.0533 0.0749 0.0832 19.0
2.0938 28.0 2464 2.4757 0.0857 0.0533 0.0749 0.0832 19.0
2.0938 29.0 2552 2.4762 0.0857 0.0533 0.0749 0.0832 19.0
2.1207 30.0 2640 2.4753 0.0857 0.0533 0.0749 0.0832 19.0

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1