whisper-medium-lv / README.md
arturslogins's picture
End of training
332378e verified
|
raw
history blame
2.2 kB
metadata
language:
  - lv
license: apache-2.0
base_model: arturslogins/whisper-medium-lv
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - ta-dataset/training
metrics:
  - wer
model-index:
  - name: Whisper medium LV - Arturs Logins
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Recorded Voice
          type: ta-dataset/training
          config: lv
          split: test
          args: 'config: lv, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 43.705463182897866

Whisper medium LV - Arturs Logins

This model is a fine-tuned version of arturslogins/whisper-medium-lv on the Recorded Voice dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0843
  • Wer: 43.7055

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 12
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0097 6.3898 1000 0.9780 45.8432
0.0023 12.7796 2000 1.0158 44.9525
0.0002 19.1693 3000 1.0549 46.1758
0.0001 25.5591 4000 1.0765 44.9881
0.0001 31.9489 5000 1.0843 43.7055

Framework versions

  • Transformers 4.41.0.dev0
  • Pytorch 2.0.1
  • Datasets 2.19.0
  • Tokenizers 0.19.1