Amrit_billsum_model2

This model is a fine-tuned version of t5-small on the billsum dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3921
  • Rouge1: 0.1912
  • Rouge2: 0.0871
  • Rougel: 0.1597
  • Rougelsum: 0.1598
  • Gen Len: 19.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
No log 1.0 62 2.4589 0.1558 0.0555 0.1294 0.1295 19.0
No log 2.0 124 2.4180 0.1849 0.0805 0.1539 0.1541 19.0
No log 3.0 186 2.3985 0.1903 0.0855 0.1583 0.1585 19.0
No log 4.0 248 2.3921 0.1912 0.0871 0.1597 0.1598 19.0

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.2
  • Tokenizers 0.13.3
Downloads last month
101
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for asandhir/Amrit_billsum_model2

Base model

google-t5/t5-small
Finetuned
(1685)
this model

Dataset used to train asandhir/Amrit_billsum_model2

Evaluation results