Edit model card

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8048
  • Answer: {'precision': 0.7424412094064949, 'recall': 0.8195302843016069, 'f1': 0.7790834312573444, 'number': 809}
  • Header: {'precision': 0.41304347826086957, 'recall': 0.4789915966386555, 'f1': 0.443579766536965, 'number': 119}
  • Question: {'precision': 0.8048561151079137, 'recall': 0.8403755868544601, 'f1': 0.8222324299494717, 'number': 1065}
  • Overall Precision: 0.7536
  • Overall Recall: 0.8103
  • Overall F1: 0.7809
  • Overall Accuracy: 0.8256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.8389 1.0 10 1.6291 {'precision': 0.01568627450980392, 'recall': 0.009888751545117428, 'f1': 0.012130401819560273, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.2798165137614679, 'recall': 0.11455399061032864, 'f1': 0.16255829447035308, 'number': 1065} 0.1374 0.0652 0.0885 0.3319
1.4797 2.0 20 1.2835 {'precision': 0.2250740375123396, 'recall': 0.28182941903584674, 'f1': 0.2502744237102085, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.3997214484679666, 'recall': 0.5389671361502347, 'f1': 0.45901639344262296, 'number': 1065} 0.3275 0.4024 0.3611 0.5792
1.1281 3.0 30 0.9324 {'precision': 0.47114375655823715, 'recall': 0.5550061804697157, 'f1': 0.5096481271282634, 'number': 809} {'precision': 0.06060606060606061, 'recall': 0.01680672268907563, 'f1': 0.02631578947368421, 'number': 119} {'precision': 0.5470149253731343, 'recall': 0.6882629107981221, 'f1': 0.6095634095634096, 'number': 1065} 0.5090 0.5941 0.5483 0.7008
0.848 4.0 40 0.7620 {'precision': 0.5925563173359452, 'recall': 0.7478368355995055, 'f1': 0.6612021857923498, 'number': 809} {'precision': 0.17391304347826086, 'recall': 0.10084033613445378, 'f1': 0.12765957446808512, 'number': 119} {'precision': 0.6578293289146645, 'recall': 0.7455399061032864, 'f1': 0.6989436619718309, 'number': 1065} 0.6143 0.7080 0.6578 0.7624
0.6618 5.0 50 0.6889 {'precision': 0.6424180327868853, 'recall': 0.7750309023485785, 'f1': 0.7025210084033613, 'number': 809} {'precision': 0.3, 'recall': 0.226890756302521, 'f1': 0.25837320574162675, 'number': 119} {'precision': 0.6919967663702506, 'recall': 0.8037558685446009, 'f1': 0.7437011294526499, 'number': 1065} 0.6557 0.7577 0.7030 0.7901
0.5475 6.0 60 0.6690 {'precision': 0.654158215010142, 'recall': 0.7972805933250927, 'f1': 0.7186629526462396, 'number': 809} {'precision': 0.31868131868131866, 'recall': 0.24369747899159663, 'f1': 0.2761904761904762, 'number': 119} {'precision': 0.7417102966841187, 'recall': 0.7981220657276995, 'f1': 0.7688828584350972, 'number': 1065} 0.6856 0.7647 0.7230 0.7949
0.4641 7.0 70 0.6472 {'precision': 0.6896551724137931, 'recall': 0.7911001236093943, 'f1': 0.7369027058146229, 'number': 809} {'precision': 0.23529411764705882, 'recall': 0.23529411764705882, 'f1': 0.23529411764705882, 'number': 119} {'precision': 0.7485131690739167, 'recall': 0.8272300469483568, 'f1': 0.7859054415700267, 'number': 1065} 0.6965 0.7772 0.7346 0.8108
0.3968 8.0 80 0.6603 {'precision': 0.7052518756698821, 'recall': 0.8133498145859085, 'f1': 0.7554535017221584, 'number': 809} {'precision': 0.26277372262773724, 'recall': 0.3025210084033613, 'f1': 0.28125000000000006, 'number': 119} {'precision': 0.7734513274336283, 'recall': 0.8206572769953052, 'f1': 0.7963553530751709, 'number': 1065} 0.7127 0.7868 0.7479 0.8117
0.3377 9.0 90 0.6641 {'precision': 0.7273730684326711, 'recall': 0.8145859085290482, 'f1': 0.7685131195335277, 'number': 809} {'precision': 0.30612244897959184, 'recall': 0.37815126050420167, 'f1': 0.3383458646616541, 'number': 119} {'precision': 0.7655838454784899, 'recall': 0.8187793427230047, 'f1': 0.7912885662431942, 'number': 1065} 0.7190 0.7908 0.7532 0.8063
0.3159 10.0 100 0.6626 {'precision': 0.7112299465240641, 'recall': 0.8220024721878862, 'f1': 0.7626146788990825, 'number': 809} {'precision': 0.36666666666666664, 'recall': 0.2773109243697479, 'f1': 0.31578947368421056, 'number': 119} {'precision': 0.7945945945945946, 'recall': 0.828169014084507, 'f1': 0.8110344827586206, 'number': 1065} 0.7400 0.7928 0.7655 0.8252
0.2565 11.0 110 0.6831 {'precision': 0.706951871657754, 'recall': 0.8170580964153276, 'f1': 0.7580275229357798, 'number': 809} {'precision': 0.3418803418803419, 'recall': 0.33613445378151263, 'f1': 0.3389830508474576, 'number': 119} {'precision': 0.7935656836461126, 'recall': 0.8338028169014085, 'f1': 0.8131868131868133, 'number': 1065} 0.7319 0.7973 0.7632 0.8146
0.2326 12.0 120 0.7081 {'precision': 0.7152103559870551, 'recall': 0.8195302843016069, 'f1': 0.7638248847926269, 'number': 809} {'precision': 0.34375, 'recall': 0.3697478991596639, 'f1': 0.3562753036437247, 'number': 119} {'precision': 0.7731601731601732, 'recall': 0.8384976525821596, 'f1': 0.8045045045045045, 'number': 1065} 0.7240 0.8028 0.7614 0.8097
0.2064 13.0 130 0.7088 {'precision': 0.7420454545454546, 'recall': 0.8071693448702101, 'f1': 0.773238602723505, 'number': 809} {'precision': 0.375, 'recall': 0.37815126050420167, 'f1': 0.37656903765690375, 'number': 119} {'precision': 0.7978628673196795, 'recall': 0.8413145539906103, 'f1': 0.8190127970749542, 'number': 1065} 0.7508 0.7998 0.7745 0.8216
0.1807 14.0 140 0.7149 {'precision': 0.7113289760348583, 'recall': 0.8071693448702101, 'f1': 0.7562246670526924, 'number': 809} {'precision': 0.373134328358209, 'recall': 0.42016806722689076, 'f1': 0.3952569169960475, 'number': 119} {'precision': 0.8001800180018002, 'recall': 0.8347417840375587, 'f1': 0.8170955882352942, 'number': 1065} 0.7360 0.7988 0.7661 0.8186
0.1673 15.0 150 0.7429 {'precision': 0.7461988304093568, 'recall': 0.788627935723115, 'f1': 0.766826923076923, 'number': 809} {'precision': 0.4015151515151515, 'recall': 0.44537815126050423, 'f1': 0.4223107569721115, 'number': 119} {'precision': 0.8001800180018002, 'recall': 0.8347417840375587, 'f1': 0.8170955882352942, 'number': 1065} 0.7531 0.7928 0.7724 0.8213
0.158 16.0 160 0.7579 {'precision': 0.7352614015572859, 'recall': 0.8170580964153276, 'f1': 0.7740046838407495, 'number': 809} {'precision': 0.3673469387755102, 'recall': 0.453781512605042, 'f1': 0.406015037593985, 'number': 119} {'precision': 0.790616854908775, 'recall': 0.8544600938967136, 'f1': 0.8212996389891697, 'number': 1065} 0.7396 0.8154 0.7757 0.8166
0.1407 17.0 170 0.7595 {'precision': 0.7474747474747475, 'recall': 0.823238566131026, 'f1': 0.783529411764706, 'number': 809} {'precision': 0.424, 'recall': 0.44537815126050423, 'f1': 0.4344262295081967, 'number': 119} {'precision': 0.8081081081081081, 'recall': 0.8422535211267606, 'f1': 0.8248275862068966, 'number': 1065} 0.7601 0.8108 0.7847 0.8237
0.1277 18.0 180 0.7927 {'precision': 0.7305986696230599, 'recall': 0.8145859085290482, 'f1': 0.7703097603740503, 'number': 809} {'precision': 0.4140625, 'recall': 0.44537815126050423, 'f1': 0.42914979757085026, 'number': 119} {'precision': 0.8114233907524931, 'recall': 0.8403755868544601, 'f1': 0.8256457564575646, 'number': 1065} 0.7534 0.8063 0.7790 0.8137
0.1268 19.0 190 0.7819 {'precision': 0.7361894024802705, 'recall': 0.8071693448702101, 'f1': 0.7700471698113207, 'number': 809} {'precision': 0.4330708661417323, 'recall': 0.46218487394957986, 'f1': 0.4471544715447155, 'number': 119} {'precision': 0.8028419182948491, 'recall': 0.8488262910798122, 'f1': 0.8251939753537197, 'number': 1065} 0.7533 0.8088 0.7801 0.8216
0.1112 20.0 200 0.7880 {'precision': 0.740782122905028, 'recall': 0.8195302843016069, 'f1': 0.7781690140845071, 'number': 809} {'precision': 0.4195804195804196, 'recall': 0.5042016806722689, 'f1': 0.4580152671755725, 'number': 119} {'precision': 0.8075880758807588, 'recall': 0.8394366197183099, 'f1': 0.8232044198895027, 'number': 1065} 0.7538 0.8113 0.7815 0.8229
0.1096 21.0 210 0.7925 {'precision': 0.7404494382022472, 'recall': 0.8145859085290482, 'f1': 0.7757504414361388, 'number': 809} {'precision': 0.45454545454545453, 'recall': 0.42016806722689076, 'f1': 0.43668122270742354, 'number': 119} {'precision': 0.815049864007253, 'recall': 0.844131455399061, 'f1': 0.8293357933579335, 'number': 1065} 0.7646 0.8068 0.7852 0.8249
0.1158 22.0 220 0.8093 {'precision': 0.7363128491620111, 'recall': 0.8145859085290482, 'f1': 0.7734741784037558, 'number': 809} {'precision': 0.41333333333333333, 'recall': 0.5210084033613446, 'f1': 0.4609665427509294, 'number': 119} {'precision': 0.8030438675022381, 'recall': 0.8422535211267606, 'f1': 0.8221814848762603, 'number': 1065} 0.7484 0.8118 0.7788 0.8210
0.0985 23.0 230 0.8013 {'precision': 0.7554535017221584, 'recall': 0.8133498145859085, 'f1': 0.7833333333333333, 'number': 809} {'precision': 0.45689655172413796, 'recall': 0.44537815126050423, 'f1': 0.4510638297872341, 'number': 119} {'precision': 0.8091809180918091, 'recall': 0.844131455399061, 'f1': 0.8262867647058824, 'number': 1065} 0.7674 0.8078 0.7871 0.8279
0.0988 24.0 240 0.8040 {'precision': 0.7385984427141268, 'recall': 0.8207663782447466, 'f1': 0.7775175644028104, 'number': 809} {'precision': 0.4198473282442748, 'recall': 0.46218487394957986, 'f1': 0.43999999999999995, 'number': 119} {'precision': 0.8016157989228008, 'recall': 0.8384976525821596, 'f1': 0.8196420376319412, 'number': 1065} 0.7519 0.8088 0.7793 0.8255
0.1004 25.0 250 0.8048 {'precision': 0.7424412094064949, 'recall': 0.8195302843016069, 'f1': 0.7790834312573444, 'number': 809} {'precision': 0.41304347826086957, 'recall': 0.4789915966386555, 'f1': 0.443579766536965, 'number': 119} {'precision': 0.8048561151079137, 'recall': 0.8403755868544601, 'f1': 0.8222324299494717, 'number': 1065} 0.7536 0.8103 0.7809 0.8256

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1
Downloads last month
6
Safetensors
Model size
113M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asharma06/layoutlm-funsd

Finetuned
(131)
this model