|
--- |
|
library_name: transformers |
|
tags: |
|
- orpo |
|
- llama3-8B |
|
- Supervised_Training |
|
model-index: |
|
- name: LLAMA_Harsha_8_B_ORDP_10k |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 34.64 |
|
name: strict accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 25.73 |
|
name: normalized accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 5.21 |
|
name: exact match |
|
source: |
|
url: >- |
|
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 3.13 |
|
name: acc_norm |
|
source: |
|
url: >- |
|
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 7.07 |
|
name: acc_norm |
|
source: |
|
url: >- |
|
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 20.11 |
|
name: accuracy |
|
source: |
|
url: >- |
|
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=asharsha30/LLAMA_Harsha_8_B_ORDP_10k |
|
name: Open LLM Leaderboard |
|
license: apache-2.0 |
|
datasets: |
|
- mlabonne/orpo-dpo-mix-40k |
|
language: |
|
- en |
|
base_model: |
|
- meta-llama/Llama-3.1-8B |
|
--- |
|
|
|
# asharsha30/LLAMA_Harsha_8_B_ORDP_10k |
|
|
|
This model is the fine tune of NousResearch/Meta-Llama-3-8B using the 12,000 steps of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k). |
|
|
|
|
|
|
|
## 💻 Usage |
|
|
|
```python |
|
# Use a pipeline as a high-level helper |
|
from transformers import pipeline |
|
|
|
messages = [ |
|
{"role": "user", "content": "Who are you?"}, |
|
] |
|
pipe = pipeline("text-generation", model="asharsha30/LLAMA_Harsha_8_B_ORDP_10k") |
|
pipe(messages) |
|
``` |
|
## 📈Training And Evaluation Report: |
|
|
|
Reports from Wandb |
|
|
|
https://wandb.ai/asharshavardhana96-texas-a-m-university/huggingface/runs/gky6j4vn?nw=nwuserasharshavardhana96 |
|
|
|
## Acknowledgment: |
|
|
|
Huge thanks to Maxime Labonne for his brilliant blog post covering about the techniques related to finetuning the llama models using SFT and ORPO |
|
|
|
## Evaluated Using: |
|
|
|
The model is evaluated using the https://github.com/mlabonne/llm-autoeval and the results are summarized from the generated gist https://gist.github.com/asharsha30-1996/4162fc98d9669aab3080645c54905bd0 |
|
|
|
## Accuracy measure on Neous Benchmarks: |
|
|
|
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average| |
|
|----------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:| |
|
|[LLAMA_Harsha_8_B_ORDP_10k](https://huggingface.co/asharsha30/LLAMA_Harsha_8_B_ORDP_10k)| 35.54| 71.15| 55.39| 37.96| 50.01| |
|
|
|
### AGIEval |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------|------:|--------|----:|---|-----:| |
|
|agieval_aqua_rat | 0|acc |26.77|± | 2.78| |
|
| | |acc_norm|27.17|± | 2.80| |
|
|agieval_logiqa_en | 0|acc |31.34|± | 1.82| |
|
| | |acc_norm|33.03|± | 1.84| |
|
|agieval_lsat_ar | 0|acc |18.70|± | 2.58| |
|
| | |acc_norm|19.57|± | 2.62| |
|
|agieval_lsat_lr | 0|acc |42.94|± | 2.19| |
|
| | |acc_norm|35.10|± | 2.12| |
|
|agieval_lsat_rc | 0|acc |52.42|± | 3.05| |
|
| | |acc_norm|43.87|± | 3.03| |
|
|agieval_sat_en | 0|acc |65.53|± | 3.32| |
|
| | |acc_norm|54.37|± | 3.48| |
|
|agieval_sat_en_without_passage| 0|acc |41.75|± | 3.44| |
|
| | |acc_norm|33.98|± | 3.31| |
|
|agieval_sat_math | 0|acc |42.27|± | 3.34| |
|
| | |acc_norm|37.27|± | 3.27| |
|
|
|
Average: 35.54% |
|
|
|
### GPT4All |
|
| Task |Version| Metric |Value| |Stderr| |
|
|-------------|------:|--------|----:|---|-----:| |
|
|arc_challenge| 0|acc |49.91|± | 1.46| |
|
| | |acc_norm|54.10|± | 1.46| |
|
|arc_easy | 0|acc |80.47|± | 0.81| |
|
| | |acc_norm|80.05|± | 0.82| |
|
|boolq | 1|acc |82.08|± | 0.67| |
|
|hellaswag | 0|acc |61.08|± | 0.49| |
|
| | |acc_norm|80.26|± | 0.40| |
|
|openbookqa | 0|acc |34.00|± | 2.12| |
|
| | |acc_norm|45.00|± | 2.23| |
|
|piqa | 0|acc |79.71|± | 0.94| |
|
| | |acc_norm|81.61|± | 0.90| |
|
|winogrande | 0|acc |74.98|± | 1.22| |
|
|
|
Average: 71.15% |
|
|
|
### TruthfulQA |
|
| Task |Version|Metric|Value| |Stderr| |
|
|-------------|------:|------|----:|---|-----:| |
|
|truthfulqa_mc| 1|mc1 |37.45|± | 1.69| |
|
| | |mc2 |55.39|± | 1.50| |
|
|
|
Average: 55.39% |
|
|
|
### Bigbench |
|
| Task |Version| Metric |Value| |Stderr| |
|
|------------------------------------------------|------:|---------------------|----:|---|-----:| |
|
|bigbench_causal_judgement | 0|multiple_choice_grade|57.37|± | 3.60| |
|
|bigbench_date_understanding | 0|multiple_choice_grade|68.02|± | 2.43| |
|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|31.01|± | 2.89| |
|
|bigbench_geometric_shapes | 0|multiple_choice_grade|20.89|± | 2.15| |
|
| | |exact_str_match | 0.00|± | 0.00| |
|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|28.40|± | 2.02| |
|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|20.71|± | 1.53| |
|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|48.67|± | 2.89| |
|
|bigbench_movie_recommendation | 0|multiple_choice_grade|31.60|± | 2.08| |
|
|bigbench_navigate | 0|multiple_choice_grade|50.60|± | 1.58| |
|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|63.25|± | 1.08| |
|
|bigbench_ruin_names | 0|multiple_choice_grade|34.38|± | 2.25| |
|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|21.84|± | 1.31| |
|
|bigbench_snarks | 0|multiple_choice_grade|44.20|± | 3.70| |
|
|bigbench_sports_understanding | 0|multiple_choice_grade|50.30|± | 1.59| |
|
|bigbench_temporal_sequences | 0|multiple_choice_grade|26.30|± | 1.39| |
|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|21.36|± | 1.16| |
|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|15.77|± | 0.87| |
|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|48.67|± | 2.89| |
|
|
|
Average: 37.96% |
|
|
|
Average score: 50.01% |
|
|
|
Elapsed time: 02:36:38 |