Model Trained Using AutoTrain

  • Problem type: Summarization
  • Model ID: 2745581349
  • CO2 Emissions (in grams): 5.3931

Model Description

This model is an attempt to simplify code understanding by generating line by line explanation of a source code. This model was fine-tuned using the Salesforce/codet5-large model. Currently it is trained on a small subset of Python snippets.

Model Usage

from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    AutoConfig,
    pipeline,
)

model_name = "ashwinR/CodeExplainer"

tokenizer = AutoTokenizer.from_pretrained(model_name, padding=True)

model = AutoModelForSeq2SeqLM.from_pretrained(model_name)

config = AutoConfig.from_pretrained(model_name)

model.eval()

pipe = pipeline("summarization", model=model_name, config=config, tokenizer=tokenizer)

raw_code = """
def preprocess(text: str) -> str:
    text = str(text)
    text = text.replace("\n", " ")
    tokenized_text = text.split(" ")
    preprocessed_text = " ".join([token for token in tokenized_text if token])

    return preprocessed_text
"""

print(pipe(raw_code)[0]["summary_text"])

Validation Metrics

  • Loss: 2.156
  • Rouge1: 29.375
  • Rouge2: 18.128
  • RougeL: 25.445
  • RougeLsum: 28.084
  • Gen Len: 19.000
Downloads last month
321
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ashwinR/CodeExplainer

Space using ashwinR/CodeExplainer 1