You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2319
  • Model Preparation Time: 0.0155
  • Wer: 0.2828
  • Cer: 0.0511

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
39.2084 0.9955 55 3.1252 0.0155 1.0 1.0
5.8814 1.9910 110 0.2362 0.0155 0.3325 0.0555
1.0775 2.9864 165 0.2061 0.0155 0.3257 0.0531
0.9777 4.0 221 0.1986 0.0155 0.3099 0.0508
0.9527 4.9955 276 0.1949 0.0155 0.3001 0.0490
0.9251 5.9910 331 0.1922 0.0155 0.3017 0.0490
0.9035 6.9864 386 0.1874 0.0155 0.2958 0.0478
0.8627 8.0 442 0.1856 0.0155 0.2860 0.0465
0.8562 8.9955 497 0.1847 0.0155 0.3021 0.0479
0.8375 9.9910 552 0.1819 0.0155 0.2859 0.0465
0.8356 10.9864 607 0.1845 0.0155 0.2906 0.0467
0.8 12.0 663 0.1837 0.0155 0.2914 0.0468
0.8013 12.9955 718 0.1800 0.0155 0.2885 0.0464
0.7971 13.9910 773 0.1808 0.0155 0.2824 0.0453
0.7772 14.9864 828 0.1813 0.0155 0.2828 0.0456
0.753 16.0 884 0.1802 0.0155 0.2841 0.0455
0.7561 16.9955 939 0.1790 0.0155 0.2842 0.0459
0.7417 17.9910 994 0.1789 0.0155 0.2852 0.0452
0.7267 18.9864 1049 0.1789 0.0155 0.2774 0.0447
0.71 20.0 1105 0.1781 0.0155 0.2748 0.0442
0.7071 20.9955 1160 0.1783 0.0155 0.2736 0.0445
0.6976 21.9910 1215 0.1785 0.0155 0.2726 0.0445
0.69 22.9864 1270 0.1775 0.0155 0.2749 0.0441
0.6646 24.0 1326 0.1768 0.0155 0.2747 0.0441
0.6679 24.9955 1381 0.1785 0.0155 0.2687 0.0434
0.6646 25.9910 1436 0.1786 0.0155 0.2745 0.0438
0.6537 26.9864 1491 0.1798 0.0155 0.2744 0.0442
0.63 28.0 1547 0.1792 0.0155 0.2710 0.0439
0.6393 28.9955 1602 0.1792 0.0155 0.2807 0.0441
0.6217 29.9910 1657 0.1773 0.0155 0.2766 0.0442
0.6264 30.9864 1712 0.1802 0.0155 0.2716 0.0433
0.5984 32.0 1768 0.1795 0.0155 0.2728 0.0435
0.6053 32.9955 1823 0.1803 0.0155 0.2714 0.0436
0.6015 33.9910 1878 0.1824 0.0155 0.2663 0.0432
0.591 34.9864 1933 0.1830 0.0155 0.2770 0.0441
0.5688 36.0 1989 0.1807 0.0155 0.2689 0.0432
0.5693 36.9955 2044 0.1854 0.0155 0.2695 0.0433
0.5646 37.9910 2099 0.1827 0.0155 0.2714 0.0435
0.5557 38.9864 2154 0.1824 0.0155 0.2695 0.0434
0.5403 40.0 2210 0.1853 0.0155 0.2720 0.0433
0.5493 40.9955 2265 0.1844 0.0155 0.2724 0.0436
0.5377 41.9910 2320 0.1841 0.0155 0.2675 0.0429
0.5289 42.9864 2375 0.1871 0.0155 0.2674 0.0427
0.5158 44.0 2431 0.1840 0.0155 0.2748 0.0435

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
1
Safetensors
Model size
965M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for asr-africa/mms-1B_all_DigitalUmuganda_Afrivoice_Shona_10hr_v1

Finetuned
(214)
this model

Collection including asr-africa/mms-1B_all_DigitalUmuganda_Afrivoice_Shona_10hr_v1

Evaluation results