Beijuka's picture
End of training
13b7cb6 verified
metadata
library_name: transformers
language:
  - sn
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - DigitalUmuganda_Afrivoice/Shona
metrics:
  - wer
model-index:
  - name: facebook/mms-1b-all
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: DigitalUmuganda
          type: DigitalUmuganda_Afrivoice/Shona
        metrics:
          - name: Wer
            type: wer
            value: 0.276446863307255

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2338
  • Model Preparation Time: 0.0115
  • Wer: 0.2764
  • Cer: 0.0510

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
36.4063 0.9954 109 5.1803 0.0115 1.0 0.9463
19.0038 2.0 219 4.0762 0.0115 1.0696 0.7878
14.6479 2.9954 328 3.2461 0.0115 0.9999 0.9420
12.4828 4.0 438 2.8917 0.0115 1.0 0.8262
11.4667 4.9954 547 2.7706 0.0115 1.0006 0.7752
10.9805 6.0 657 2.6967 0.0115 1.0007 0.7594
10.6692 6.9954 766 2.4726 0.0115 1.0 0.7709
2.4538 8.0 876 0.2426 0.0115 0.3420 0.0586
1.0883 8.9954 985 0.2242 0.0115 0.3166 0.0541
1.0062 10.0 1095 0.2119 0.0115 0.3104 0.0523
0.9739 10.9954 1204 0.2072 0.0115 0.3081 0.0510
0.934 12.0 1314 0.2035 0.0115 0.2992 0.0498
0.9141 12.9954 1423 0.2000 0.0115 0.2934 0.0492
0.8906 14.0 1533 0.1973 0.0115 0.2896 0.0485
0.8799 14.9954 1642 0.1958 0.0115 0.2883 0.0478
0.8563 16.0 1752 0.1952 0.0115 0.2843 0.0475
0.8487 16.9954 1861 0.1929 0.0115 0.2841 0.0469
0.8292 18.0 1971 0.1909 0.0115 0.2799 0.0466
0.8203 18.9954 2080 0.1892 0.0115 0.2815 0.0468
0.8039 20.0 2190 0.1897 0.0115 0.2789 0.0460
0.8014 20.9954 2299 0.1899 0.0115 0.2852 0.0470
0.7822 22.0 2409 0.1883 0.0115 0.2761 0.0457
0.783 22.9954 2518 0.1860 0.0115 0.2757 0.0456
0.765 24.0 2628 0.1869 0.0115 0.2728 0.0451
0.7608 24.9954 2737 0.1844 0.0115 0.2701 0.0448
0.7494 26.0 2847 0.1851 0.0115 0.2704 0.0444
0.7414 26.9954 2956 0.1841 0.0115 0.2713 0.0450
0.73 28.0 3066 0.1855 0.0115 0.2672 0.0443
0.7282 28.9954 3175 0.1859 0.0115 0.2706 0.0442
0.7164 30.0 3285 0.1837 0.0115 0.2683 0.0441
0.7145 30.9954 3394 0.1835 0.0115 0.2743 0.0447
0.7027 32.0 3504 0.1855 0.0115 0.2739 0.0443
0.6973 32.9954 3613 0.1843 0.0115 0.2674 0.0438
0.6869 34.0 3723 0.1832 0.0115 0.2699 0.0440
0.683 34.9954 3832 0.1834 0.0115 0.2722 0.0441
0.6677 36.0 3942 0.1818 0.0115 0.2684 0.0439
0.67 36.9954 4051 0.1825 0.0115 0.2631 0.0435
0.6577 38.0 4161 0.1850 0.0115 0.2744 0.0442
0.6545 38.9954 4270 0.1819 0.0115 0.2694 0.0438
0.6412 40.0 4380 0.1860 0.0115 0.2711 0.0438
0.6455 40.9954 4489 0.1837 0.0115 0.2635 0.0431
0.6259 42.0 4599 0.1841 0.0115 0.2638 0.0430
0.6344 42.9954 4708 0.1855 0.0115 0.2671 0.0434
0.619 44.0 4818 0.1840 0.0115 0.2627 0.0428
0.6137 44.9954 4927 0.1857 0.0115 0.2596 0.0426
0.6058 46.0 5037 0.1827 0.0115 0.2656 0.0430
0.6009 46.9954 5146 0.1851 0.0115 0.2654 0.0429
0.5885 48.0 5256 0.1837 0.0115 0.2619 0.0423
0.5892 48.9954 5365 0.1851 0.0115 0.2681 0.0429
0.5741 50.0 5475 0.1869 0.0115 0.2610 0.0427
0.5812 50.9954 5584 0.1861 0.0115 0.2600 0.0426
0.5653 52.0 5694 0.1847 0.0115 0.2651 0.0431
0.5604 52.9954 5803 0.1886 0.0115 0.2641 0.0428
0.5532 54.0 5913 0.1891 0.0115 0.2638 0.0428
0.5533 54.9954 6022 0.1894 0.0115 0.2602 0.0421

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1