Beijuka's picture
End of training
9d8550e verified
metadata
library_name: transformers
language:
  - sn
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - DigitalUmuganda_Afrivoice/Shona
metrics:
  - wer
model-index:
  - name: facebook/mms-1b-all
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: DigitalUmuganda
          type: DigitalUmuganda_Afrivoice/Shona
        metrics:
          - name: Wer
            type: wer
            value: 0.2619660819281792

facebook/mms-1b-all

This model is a fine-tuned version of facebook/mms-1b-all on the DigitalUmuganda dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2146
  • Model Preparation Time: 0.0203
  • Wer: 0.2620
  • Cer: 0.0482

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer Cer
9.7791 1.0 546 0.2166 0.0203 0.3124 0.0531
0.9395 2.0 1092 0.2028 0.0203 0.2937 0.0494
0.8823 3.0 1638 0.1954 0.0203 0.2847 0.0479
0.8476 4.0 2184 0.1902 0.0203 0.2733 0.0460
0.8178 5.0 2730 0.1886 0.0203 0.2677 0.0451
0.7954 6.0 3276 0.1859 0.0203 0.2673 0.0443
0.7758 7.0 3822 0.1829 0.0203 0.2641 0.0440
0.7604 8.0 4368 0.1824 0.0203 0.2576 0.0430
0.746 9.0 4914 0.1821 0.0203 0.2678 0.0438
0.7375 10.0 5460 0.1802 0.0203 0.2609 0.0433
0.7223 11.0 6006 0.1800 0.0203 0.2572 0.0428
0.714 12.0 6552 0.1782 0.0203 0.2564 0.0426
0.7007 13.0 7098 0.1753 0.0203 0.2552 0.0421
0.6923 14.0 7644 0.1764 0.0203 0.2560 0.0421
0.6842 15.0 8190 0.1769 0.0203 0.2563 0.0422
0.6742 16.0 8736 0.1733 0.0203 0.2483 0.0410
0.6655 17.0 9282 0.1767 0.0203 0.2506 0.0415
0.6594 18.0 9828 0.1750 0.0203 0.2503 0.0412
0.651 19.0 10374 0.1733 0.0203 0.2513 0.0413
0.6435 20.0 10920 0.1767 0.0203 0.2458 0.0410
0.637 21.0 11466 0.1773 0.0203 0.2449 0.0407
0.6306 22.0 12012 0.1750 0.0203 0.2488 0.0411
0.6216 23.0 12558 0.1738 0.0203 0.2507 0.0412
0.6174 24.0 13104 0.1788 0.0203 0.2450 0.0407
0.6093 25.0 13650 0.1802 0.0203 0.2479 0.0408
0.6033 26.0 14196 0.1801 0.0203 0.2463 0.0407
0.5932 27.0 14742 0.1793 0.0203 0.2462 0.0407
0.5885 28.0 15288 0.1780 0.0203 0.2465 0.0407
0.5823 29.0 15834 0.1802 0.0203 0.2465 0.0404
0.5749 30.0 16380 0.1794 0.0203 0.2465 0.0407

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 3.0.2
  • Tokenizers 0.20.1