|
--- |
|
library_name: transformers |
|
language: |
|
- bem |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- BIG-C/BEMBA |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Bemba - Beijuka Bruno |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: BEMBA |
|
type: BIG-C/BEMBA |
|
args: 'config: bemba, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.4524958367137794 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Bemba - Beijuka Bruno |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the BEMBA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1631 |
|
- Model Preparation Time: 0.0092 |
|
- Wer: 0.4525 |
|
- Cer: 0.1227 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:----------------------:|:------:|:------:| |
|
| 1.1298 | 1.0 | 1281 | 0.8440 | 0.0092 | 0.5704 | 0.1924 | |
|
| 0.6239 | 2.0 | 2562 | 0.7778 | 0.0092 | 0.5489 | 0.1840 | |
|
| 0.4117 | 3.0 | 3843 | 0.7974 | 0.0092 | 0.5208 | 0.1680 | |
|
| 0.2409 | 4.0 | 5124 | 0.8600 | 0.0092 | 0.5432 | 0.1883 | |
|
| 0.1249 | 5.0 | 6405 | 0.9344 | 0.0092 | 0.5202 | 0.1696 | |
|
| 0.0619 | 6.0 | 7686 | 1.0230 | 0.0092 | 0.5079 | 0.1667 | |
|
| 0.0349 | 7.0 | 8967 | 1.0739 | 0.0092 | 0.5135 | 0.1649 | |
|
| 0.0232 | 8.0 | 10248 | 1.1178 | 0.0092 | 0.5039 | 0.1673 | |
|
| 0.0173 | 9.0 | 11529 | 1.1459 | 0.0092 | 0.5154 | 0.1670 | |
|
| 0.0139 | 10.0 | 12810 | 1.2013 | 0.0092 | 0.5139 | 0.1672 | |
|
| 0.0124 | 11.0 | 14091 | 1.2302 | 0.0092 | 0.5133 | 0.1658 | |
|
| 0.011 | 12.0 | 15372 | 1.2629 | 0.0092 | 0.5142 | 0.1732 | |
|
| 0.0084 | 13.0 | 16653 | 1.3002 | 0.0092 | 0.5135 | 0.1650 | |
|
| 0.0075 | 14.0 | 17934 | 1.3475 | 0.0092 | 0.4972 | 0.1629 | |
|
| 0.0081 | 15.0 | 19215 | 1.3522 | 0.0092 | 0.4931 | 0.1618 | |
|
| 0.0077 | 16.0 | 20496 | 1.3592 | 0.0092 | 0.5087 | 0.1623 | |
|
| 0.0073 | 17.0 | 21777 | 1.3655 | 0.0092 | 0.5067 | 0.1662 | |
|
| 0.0061 | 18.0 | 23058 | 1.3930 | 0.0092 | 0.5074 | 0.1669 | |
|
| 0.0057 | 19.0 | 24339 | 1.3912 | 0.0092 | 0.5055 | 0.1636 | |
|
| 0.0065 | 20.0 | 25620 | 1.4236 | 0.0092 | 0.4995 | 0.1641 | |
|
| 0.0052 | 21.0 | 26901 | 1.4587 | 0.0092 | 0.5035 | 0.1609 | |
|
| 0.0044 | 22.0 | 28182 | 1.4459 | 0.0092 | 0.5034 | 0.1653 | |
|
| 0.006 | 23.0 | 29463 | 1.4685 | 0.0092 | 0.5036 | 0.1684 | |
|
| 0.0051 | 24.0 | 30744 | 1.4455 | 0.0092 | 0.5029 | 0.1651 | |
|
| 0.0043 | 25.0 | 32025 | 1.4682 | 0.0092 | 0.5410 | 0.1875 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|