|
--- |
|
library_name: transformers |
|
language: |
|
- bem |
|
license: apache-2.0 |
|
base_model: openai/whisper-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- BIG-C/BEMBA |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Bemba - Beijuka Bruno |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: BEMBA |
|
type: BIG-C/BEMBA |
|
args: 'config: bemba, split: test' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.3491317596093836 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Bemba - Beijuka Bruno |
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the BEMBA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4520 |
|
- Wer: 0.3491 |
|
- Cer: 0.0971 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.025 |
|
- num_epochs: 100 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| |
|
| 0.9127 | 1.0 | 5143 | 0.5881 | 0.4483 | 0.1252 | |
|
| 0.5091 | 2.0 | 10286 | 0.4981 | 0.3918 | 0.1136 | |
|
| 0.4171 | 3.0 | 15429 | 0.4668 | 0.3636 | 0.1024 | |
|
| 0.3332 | 4.0 | 20572 | 0.4638 | 0.3551 | 0.1022 | |
|
| 0.251 | 5.0 | 25715 | 0.4828 | 0.3585 | 0.1101 | |
|
| 0.1689 | 6.0 | 30858 | 0.5249 | 0.3631 | 0.1102 | |
|
| 0.0992 | 7.0 | 36001 | 0.5907 | 0.3645 | 0.1078 | |
|
| 0.0548 | 8.0 | 41144 | 0.6471 | 0.3676 | 0.1082 | |
|
| 0.034 | 9.0 | 46287 | 0.7023 | 0.3646 | 0.1071 | |
|
| 0.0252 | 10.0 | 51430 | 0.7307 | 0.3707 | 0.1129 | |
|
| 0.0207 | 11.0 | 56573 | 0.7652 | 0.3652 | 0.1071 | |
|
| 0.0178 | 12.0 | 61716 | 0.7873 | 0.3653 | 0.1088 | |
|
| 0.0161 | 13.0 | 66859 | 0.8036 | 0.3643 | 0.1093 | |
|
| 0.0144 | 14.0 | 72002 | 0.8223 | 0.3573 | 0.1064 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.2.0+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|