|
--- |
|
license: apache-2.0 |
|
language: |
|
- zh |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: false |
|
quantized_by: audreyt |
|
--- |
|
# Breeze-7B-Instruct-64k-v0.1-GGUF |
|
|
|
- Model creator: [MediaTek Research](https://huggingface.co/MediaTek-Research) |
|
- Original model: [Breeze-7B-Instruct-64k-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) |
|
|
|
## Description |
|
|
|
This repo contains GGUF format model files for MediaTek Research's [Breeze-7B-Instruct-64k-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1). |
|
|
|
<!-- README_GGUF.md-about-gguf start --> |
|
### About GGUF |
|
|
|
GGUF is a new format introduced by the llama.cpp team on August 21st 2023. It is a replacement for GGML, which is no longer supported by llama.cpp. |
|
|
|
Here is an incomplete list of clients and libraries that are known to support GGUF: |
|
|
|
* [llama.cpp](https://github.com/ggerganov/llama.cpp). The source project for GGUF. Offers a CLI and a server option. |
|
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui), the most widely used web UI, with many features and powerful extensions. Supports GPU acceleration. |
|
* [KoboldCpp](https://github.com/LostRuins/koboldcpp), a fully featured web UI, with GPU accel across all platforms and GPU architectures. Especially good for story telling. |
|
* [GPT4All](https://gpt4all.io/index.html), a free and open source local running GUI, supporting Windows, Linux and macOS with full GPU accel. |
|
* [LM Studio](https://lmstudio.ai/), an easy-to-use and powerful local GUI for Windows and macOS (Silicon), with GPU acceleration. Linux available, in beta as of 27/11/2023. |
|
* [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), a great web UI with many interesting and unique features, including a full model library for easy model selection. |
|
* [Faraday.dev](https://faraday.dev/), an attractive and easy to use character-based chat GUI for Windows and macOS (both Silicon and Intel), with GPU acceleration. |
|
* [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), a Python library with GPU accel, LangChain support, and OpenAI-compatible API server. |
|
* [candle](https://github.com/huggingface/candle), a Rust ML framework with a focus on performance, including GPU support, and ease of use. |
|
* [ctransformers](https://github.com/marella/ctransformers), a Python library with GPU accel, LangChain support, and OpenAI-compatible AI server. Note, as of time of writing (November 27th 2023), ctransformers has not been updated in a long time and does not support many recent models. |
|
|
|
<!-- README_GGUF.md-about-gguf end --> |
|
|
|
# Original model card |
|
|
|
Breeze-7B is a language model family that builds on top of [Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1), specifically intended for Traditional Chinese use. |
|
|
|
[Breeze-7B-Base](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) is the base model for the Breeze-7B series. |
|
It is suitable for use if you have substantial fine-tuning data to tune it for your specific use case. |
|
|
|
[Breeze-7B-Instruct](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) derives from the base model Breeze-7B-Base, making the resulting model amenable to be used as-is for commonly seen tasks. |
|
|
|
[Breeze-7B-Instruct-64k](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) is a slightly modified version of |
|
Breeze-7B-Instruct to enable a 64k-token context length. Roughly speaking, that is equivalent to 88k Traditional Chinese characters. |
|
|
|
The current release version of Breeze-7B is v0.1. |
|
|
|
Practicality-wise: |
|
- Breeze-7B-Base expands the original vocabulary with additional 30,000 Traditional Chinese tokens. With the expanded vocabulary, everything else being equal, Breeze-7B operates at twice the inference speed for Traditional Chinese to Mistral-7B and Llama 7B. [See [Inference Performance](#inference-performance).] |
|
- Breeze-7B-Instruct can be used as is for common tasks such as Q&A, RAG, multi-round chat, and summarization. |
|
- In particular, Breeze-7B-Instruct-64k can perform tasks at a document level, not a chapter level. |
|
|
|
Performance-wise: |
|
- Breeze-7B-Instruct demonstrates impressive performance in benchmarks for Traditional Chinese, when compared to similar sized open-source contemporaries such as Taiwan-LLM-7B/13B-chat, QWen-7B-Chat, and Yi-6B-Chat. [See [Chat Model Performance](#chat-model-performance).] |
|
- Breeze-7B-Instruct shows comparable results to Mistral-7B-Instruct-v0.1 on the MMLU and MT-Bench benchmarks. [See [Chat Model Performance](#chat-model-performance).] |
|
|
|
|
|
*A project by the members (in alphabetical order): Chan-Jan Hsu 許湛然, Chang-Le Liu 劉昶樂, Feng-Ting Liao 廖峰挺, Po-Chun Hsu 許博竣, Yi-Chang Chen 陳宜昌, and the supervisor Da-Shan Shiu 許大山.* |
|
|
|
## Features |
|
|
|
- Breeze-7B-Base-v0.1 |
|
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese |
|
- 8k-token context length |
|
- Breeze-7B-Instruct-v0.1 |
|
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese |
|
- 8k-token context length |
|
- Multi-turn dialogue (without special handling for harmfulness) |
|
- Breeze-7B-Instruct-64k-v0.1 |
|
- Expanding the vocabulary dictionary size from 32k to 62k to better support Traditional Chinese |
|
- 64k-token context length |
|
- Multi-turn dialogue (without special handling for harmfulness) |
|
|
|
## Model Details |
|
|
|
- Breeze-7B-Base-v0.1 |
|
- Finetuned from: [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) |
|
- Model type: Causal decoder-only transformer language model |
|
- Language: English and Traditional Chinese (zh-tw) |
|
- Breeze-7B-Instruct-v0.1 |
|
- Finetuned from: [MediaTek-Research/Breeze-7B-Base-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) |
|
- Model type: Causal decoder-only transformer language model |
|
- Language: English and Traditional Chinese (zh-tw) |
|
- Breeze-7B-Instruct-64k-v0.1 |
|
- Finetuned from: [MediaTek-Research/Breeze-7B-Instruct-v0.1](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) |
|
- Model type: Causal decoder-only transformer language model |
|
- Language: English and Traditional Chinese (zh-tw) |
|
|
|
## Base Model Performance |
|
|
|
**TMMLU+**, **DRCD**, and **Table** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2). |
|
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval) |
|
and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train). |
|
We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. |
|
|
|
|
|
| Models | |↑ TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MMLU (ACC) | |
|
|----------------------------------------------|--------|--------------|-------------|-------------|------------| |
|
| | |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Knowledge| |
|
| | | 5 shot | 3 shot | 5 shot | 5 shot | |
|
| [Yi-34B](https://huggingface.co/01-ai/Yi-34B)| 34B | 63.10 | 84.57 | 49.31 | 77.42 | |
|
| [Qwen-14B](https://huggingface.co/01-ai/Qwen/Qwen-14B)| 14B | 51.30 | 16.95 * | 50.69 | 68.83 | |
|
| [Yi-6B](https://huggingface.co/01-ai/Yi-6B) | 6B | 49.63 | 76.61 | 34.72 | 65.35 | |
|
| [Qwen-7B](https://huggingface.co/01-ai/Qwen/Qwen-7B)| 7B | 42.84 | 0.0 * | 39.58 | 61.00 | |
|
| [**Breeze-7B-Base-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Base-v0.1) | 7B | 40.35 | 81.13 | 28.47 | 61.63 | |
|
| [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1)| 7B | 36.93 | 79.27 | 27.78 | 64.89 | |
|
|
|
|
|
\* Few-shot learning cannot effectively guide the model to generate the proper answer. |
|
|
|
|
|
## Chat Model Performance |
|
|
|
**TMMLU+**, **DRCD**, **Table**, and **MT-Bench-tw** source from [MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2). |
|
[MediaTek-Research/TCEval-v2](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) derives from [TCEval-v1](https://github.com/mtkresearch/MR-Models/tree/main/TC-Eval) |
|
and [ikala/tmmluplus](https://huggingface.co/datasets/ikala/tmmluplus). **MMLU** sources from [hails/mmlu_no_train](https://huggingface.co/datasets/hails/mmlu_no_train). |
|
**MT-Bench** source from [lmsys/mt_bench_human_judgments](https://huggingface.co/datasets/lmsys/mt_bench_human_judgments). |
|
We use the code revised from [EleutherAI/lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate **TMMLU+**, **DRCD**, **Table**, and **MMLU**. |
|
We use the code revised from [fastchat llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge) (GPT4 as judge) to evaluate **MT-Bench-tw** and **MT-Bench**. |
|
|
|
|
|
| Models | |↑ MT-Bench-tw (Score)| TMMLU+ (ACC) | TMMLU+ (ACC) | DRCD (EM) | Table (ACC) | MT-Bench (Score) | MMLU (ACC) | MMLU (ACC) | |
|
|---------------------------------------------------------------------------------------------------------|--------|--------------------|--------------|--------------|-------------|-------------|------------------|-------------|-------------| |
|
| | |TC, Chat |TC, Knowledge |TC, Knowledge |TC, Reasoning|TC, Reasoning|EN, Chat |EN, Knowledge|EN, Knowledge| |
|
| | |0 shot | 0 shot | 5 shot | 3 shot | 0 shot |0 shot | 0 shot | 5 shot | |
|
| [gpt-3.5-turbo](https://openai.com) | |7.1 | 41.76 | | | |7.9 | 70.00 | | |
|
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat) | 34B |6.9 | 54.87 | | | 36.81 |7.6 | 71.04 | | |
|
| [Qwen-14B-Chat](https://huggingface.co/Qwen/Qwen-14B-Chat) | 14B |6.4 | 48.41 | | | 41.67 |7.2 | 64.91 | | |
|
| [**Breeze-7B-Instruct-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v0.1) | 7B |5.7 | 41.61 | | | 45.83 |7.1 | 63.26 | | |
|
| [**Breeze-7B-Instruct-64k-v0.1**](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-64k-v0.1) | 7B |5.5 | 40.99 | | | 36.11 |7.1 | 63.68 | | |
|
| [Qwen-7B-Chat](https://huggingface.co/Qwen/Qwen-7B-Chat) | 7B |5.4 | 40.02 | | | 33.33 |6.2 | 55.94 | | |
|
| [Yi-6B-Chat](https://huggingface.co/01-ai/Yi-6B-Chat) | 6B |5.0 | 44.79 | | | 25.69 |6.0 | 59.45 | | |
|
| [Taiwan-LLM-13B-v2.0-chat](https://huggingface.co/yentinglin/Taiwan-LLM-13B-v2.0-chat) | 13B |5.0 | 29.47 | | | 23.61 |-* | 50.50 | | |
|
| [Taiwan-LLM-7B-v2.1-chat](https://huggingface.co/yentinglin/Taiwan-LLM-7B-v2.1-chat) | 7B |4.2 | 28.08 | | | 31.25 | -* | 42.72 | | |
|
|
|
\* Taiwan-LLM models responds to multi-turn questions (English) in Traditional Chinese. |
|
|
|
**Category Score of MT-Bench-tw (0 shot)** |
|
|
|
| Models | STEM |Extraction|Reasoning| Math | Coding | Roleplay| Writing |Humanities|↑ AVG | |
|
|-----------------------------------------------------|---------|---------|---------|---------|---------|---------|---------|---------|---------| |
|
| gpt-3.5-turbo | 7.8 | 6.1 | 5.1 | 6.4 | 6.2 | 8.7 | 7.4 | 9.3 | 7.1 | |
|
| Yi-34B-Chat | 9.0 | 4.8 | 5.7 | 4.0 | 4.7 | 8.5 | 8.7 | 9.8 | 6.9 | |
|
| Qwen-14B-Chat | 7.6 | 5.7 | 4.5 | 4.2 | 5.3 | 7.5 | 7.3 | 9.1 | 6.4 | |
|
| **Breeze-7B-Instruct-v0.1** | 6.5 | 5.6 | 3.9 | 3.6 | 4.3 | 6.9 | 5.7 | 9.3 | 5.7 | |
|
| **Breeze-7B-Instruct-64k-v0.1** | 6.1 | 5.3 | 3.7 | 2.9 | 4.2 | 7.0 | 6.7 | 8.3 | 5.5 | |
|
| Qwen-7B-Chat | 6.6 | 4.5 | 4.8 | 2.9 | 3.6 | 6.2 | 6.8 | 8.2 | 5.4 | |
|
| Yi-6B-Chat | 7.3 | 2.7 | 3.1 | 3.3 | 2.3 | 7.2 | 5.2 | 8.8 | 5.0 | |
|
| Taiwan-LLM-13B-v2.0-chat | 6.1 | 3.4 | 4.1 | 2.3 | 3.1 | 7.4 | 6.6 | 6.8 | 5.0 | |
|
| Taiwan-LLM-7B-v2.1-chat | 5.2 | 2.6 | 2.3 | 1.2 | 3.4 | 6.6 | 5.7 | 6.8 | 4.2 | |
|
|
|
**Category ACC of TMMLU+ (0 shot)** |
|
|
|
| Model | STEM | Social Science | Humanities | Other | ↑ AVG | |
|
|-----------------------------------------------------|--------------|----------------|------------|------------|---------| |
|
| Yi-34B-Chat | 47.65 | 64.25 | 52.73 | 54.91 | 54.87 | |
|
| Qwen-14B-Chat | 43.83 | 55.00 | 48.55 | 46.22 | 48.41 | |
|
| Yi-6B-Chat | 37.80 | 51.74 | 45.36 | 44.25 | 44.79 | |
|
| gpt-3.5-turbo | 41.56 | 46.72 | 36.73 | 42.03 | 41.76 | |
|
| **Breeze-7B-Instruct-v0.1** | 37.41 | 46.81 | 42.06 | 40.16 | 41.61 | |
|
| **Breeze-7B-Instruct-64k-v0.1** | 37.88 | 46.35 | 40.31 | 39.40 | 40.99 | |
|
| Qwen-7B-Chat | 35.44 | 46.22 | 38.35 | 40.06 | 40.02 | |
|
| Taiwan-LLM-13B-v2.0-chat | 27.74 | 33.69 | 27.03 | 29.43 | 29.47 | |
|
| Taiwan-LLM-7B-v2.1-chat | 25.58 | 31.76 | 27.36 | 27.61 | 28.08 | |
|
|
|
|
|
|
|
## Inference Performance |
|
In this test, we use the first 700 characters of the [web article](https://health.udn.com/health/story/5976/7699252?from=udn_ch1005_main_index) as the input and ask the model to write the same article again. |
|
All inferences run on 2 RTX A6000 GPUs (using `vllm`, with a tensor-parallel size of 2). |
|
|
|
| Models | ↓ Inference Time (sec)|Estimated Max Input Length (Char)| |
|
|--------------------------------------------------------------------|-------------------|--------------------------| |
|
| Yi-6B | 10.62 | 5.2k | |
|
| **Breeze-7B-Instruct-v0.1** | 10.74 | 11.1k | |
|
| **Breeze-7B-Instruct-64k-v0.1** | 10.74 | 88.8k | |
|
| Qwen-7B | 10.86 | 9.8k | |
|
| Qwen-14B | 18.89 | 9.8k | |
|
| Mistral-7B-v0.1 | 20.48 | 5.1k | |
|
| Taiwan-LLM-7B-v2.1-base | 26.26 | 2.2k | |
|
| Taiwan-LLM-13B-v2.0-base | 36.80 | 2.2k | |
|
| Yi-34B | 43.71 | 4.5k | |
|
|
|
## Long-context Performance |
|
|
|
TBD |
|
|
|
## Examples |
|
|
|
TBD |
|
|
|
## Use in Transformers |
|
|
|
First install direct dependencies: |
|
``` |
|
pip install transformers torch accelerate |
|
``` |
|
If you want faster inference using flash-attention2, you need to install these dependencies: |
|
```bash |
|
pip install packaging ninja |
|
pip install flash-attn |
|
``` |
|
Then load the model in transformers: |
|
```python |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
|
|
model = AutoModelForCausalLM.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1") |
|
tokenizer = AutoTokenizer.from_pretrained("MediaTek-Research/Breeze-7B-Instruct-v0.1") |
|
|
|
# you can also using pipeline |
|
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
generator( |
|
"請問台灣最高的山是", |
|
max_length=30, |
|
num_return_sequences=1, |
|
) |
|
|
|
``` |
|
|
|
The structure of the query template follows that of Mistral-7B-Instruct, as shown below. |
|
```txt |
|
<s> SYS_PROMPT [INST] QUERY1 [/INST] RESPONSE1 [INST] QUERY2 [/INST] |
|
``` |
|
where `SYS_PROMPT`, `QUERY1`, `RESPONSE1`, and `QUERY2` can be provided by the user. |
|
|
|
The suggested default `SYS_PROMPT` is |
|
```txt |
|
You are a helpful AI assistant built by MediaTek Research. The user you are helping speaks Traditional Chinese and comes from Taiwan. |
|
``` |
|
|
|
## Citation |
|
|
|
``` |
|
@article{breeze7b2024, |
|
title={}, |
|
author={}, |
|
journal={arXiv}, |
|
year={2024} |
|
} |
|
``` |