|
# Llama-2-13b SuperCOT lora checkpoints |
|
|
|
These are my Llama-2-13b SuperCOT Loras trained using QLora on the [SuperCOT Dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset). |
|
|
|
### Architecture |
|
|
|
- **Model Architecture**: Llama-2-13b |
|
- **Training Algorithm**: QLora |
|
|
|
### Training Details |
|
|
|
- **Dataset**: [SuperCOT Dataset](https://huggingface.co/datasets/kaiokendev/SuperCOT-dataset) |
|
- **Datset type**: alpaca |
|
- **Training Parameters**: [See Here](https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/examples/llama-2/qlora.yml) |
|
- **Training Environment**: Axolotl |
|
- **sequence_len**: 4096 |
|
|
|
## Acknowledgments |
|
|
|
Special thanks to the creators of the datasets in SuperCOT. Additionally, thanks to Kaiokendev for curating the SuperCOT dataset. Thanks to the contributors of the Axolotl. |
|
|
|
|
|
## Stuff generated from axolotl: |
|
|
|
--- |
|
library_name: peft |
|
--- |
|
## Training procedure |
|
|
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- load_in_8bit: False |
|
- load_in_4bit: True |
|
- llm_int8_threshold: 6.0 |
|
- llm_int8_skip_modules: None |
|
- llm_int8_enable_fp32_cpu_offload: False |
|
- llm_int8_has_fp16_weight: False |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
- bnb_4bit_compute_dtype: bfloat16 |
|
### Framework versions |
|
|
|
- PEFT 0.5.0.dev0 |
|
|
|
- PEFT 0.5.0.dev0 |
|
|