YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
Llama-2-13b SuperCOT lora checkpoints
These are my 2nd round of Llama-2-13b SuperCOT Lora checkpoints trained using QLora on the SuperCOT Dataset with different parameters closer to the llama 1 supercot.
Architecture
- Model Architecture: Llama-2-13b
- Training Algorithm: QLora
Training Details
- Dataset: SuperCOT Dataset
- Datset type: alpaca
- Training Parameters: See Here
- Training Environment: Axolotl
- sequence_len: 4096
Uploads/merges
Thanks to these gigachads for uploading
yml
base_model: NousResearch/Llama-2-13b-hf
base_model_config: NousResearch/Llama-2-13b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
is_llama_derived_model: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
path: kaiokendev/SuperCOT-dataset
type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./qlora-out/checkpoint-4230
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 8
lora_alpha: 16
lora_dropout: 0
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_run_id:
wandb_log_model:
gradient_accumulation_steps: 2
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0003
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
eval_steps: 20
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
Acknowledgments
Special thanks to the creators of the datasets in SuperCOT. Additionally, thanks to Kaiokendev for curating the SuperCOT dataset. Thanks to the contributors of the Axolotl.
Stuff generated from axolotl:
library_name: peft
Training procedure
The following bitsandbytes
quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
Framework versions
- PEFT 0.6.0.dev0
- Downloads last month
- 14
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.