abhishek's picture
Add evaluation results on the mrpc config of glue
92bef9d
|
raw
history blame
2.54 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: natural-language-inference
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: train
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8284313725490197
          - name: F1
            type: f1
            value: 0.8821548821548822
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8284313725490197
            verified: true
          - name: Precision
            type: precision
            value: 0.8317460317460318
            verified: true
          - name: Recall
            type: recall
            value: 0.9390681003584229
            verified: true
          - name: AUC
            type: auc
            value: 0.88480453446695
            verified: true
          - name: F1
            type: f1
            value: 0.8821548821548822
            verified: true
          - name: loss
            type: loss
            value: 0.4118642508983612
            verified: true

natural-language-inference

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4120
  • Accuracy: 0.8284
  • F1: 0.8822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 230 0.4288 0.8039 0.8644
No log 2.0 460 0.4120 0.8284 0.8822

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1