Hindi-wiki-LLaMA

Hindi Wikipedia Article Generation Model This repository contains a language generation model trained on Hindi Wikipedia articles using the Hugging Face Transformers library. The model is based on the Llama-2 architecture and fine-tuned on a large dataset of Hindi text from Wikipedia.

Model Details

  • Base Model: Llama-2
  • Pretraining Dataset: Hindi Wikipedia Articles
  • Tokenizer: Hugging Face Tokenizer
  • Model Architecture: Causal Language Modeling
from peft import AutoPeftModelForCausalLM

base_model_name = "meta-llama/Llama-2-7b-hf"
tokenizer = AutoTokenizer.from_pretrained(base_model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
output_dir = "./final_checkpoint"
device_map = {"": 0}
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map=device_map, torch_dtype=torch.bfloat16)
device = torch.device("cuda")
text = ""
inputs = tokenizer(text, return_tensors="pt").to(device)
outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), attention_mask=inputs["attention_mask"], max_new_tokens=100, pad_token_id=tokenizer.eos_token_id)

print(tokenizer.decode(outputs[0][len(inputs["input_ids"][0]):], skip_special_tokens=True))

Model Performance:--

The model has been trained on a substantial amount of Hindi Wikipedia articles, which allows it to generate coherent and contextually relevant text.

Downloads last month
10
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.