|
--- |
|
language: |
|
- en |
|
license: mit |
|
tags: |
|
- text-classification |
|
datasets: |
|
- trec |
|
model-index: |
|
- name: aychang/bert-base-cased-trec-coarse |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: trec |
|
type: trec |
|
config: default |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.974 |
|
name: Accuracy |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTUwZTU1ZGU5YTRiMzNhNmQyMjNlY2M5YjAwN2RlMmYxODI2MjFkY2Q3NWFjZDg3Zjg5ZDk1Y2I1MTUxYjFhMCIsInZlcnNpb24iOjF9.GJkxJOFhsO4UaoHpHH1136Qj_fu9UQ9o3DThtT46hvMduswkgobl9iz6ICYQ7IdYKFbh3zRTlsZzjnAlzGqdBA |
|
- type: precision |
|
value: 0.9793164100816639 |
|
name: Precision Macro |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMTMxMjI3NWZhOGZkODJmYzkxYzdhZWIwMTBkZTg4YWZiNjcwNTVmM2RjYmQ3ZmNhZjM2MWQzYTUzNzFlMjQzOCIsInZlcnNpb24iOjF9.n45s1_gW040u5f2y-zfVx_5XU-J97dcuWlmaIZsJsCetcHtrjsbHut2gAcPxErl8UPTXSq1XDg5WWug4FPM8CQ |
|
- type: precision |
|
value: 0.974 |
|
name: Precision Micro |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTY5ZTZiNmYzZDQzYWZiZDdlNDllZWQ4NTVjZWZlYWJkZDgyNGNhZjAzOTZjZDc0NDUwMTE3ODVlMjFjNTIxZCIsInZlcnNpb24iOjF9.4lR7MgvxxTblEV4LZGbko-ylIeFjcjNM5P21iYH6vkNkjItIfiXmKbL55_Zeab4oGJ5ytWz0rIdlpNnmmV29Cw |
|
- type: precision |
|
value: 0.9746805065928548 |
|
name: Precision Weighted |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDEzYmZmZDIyNDFmNzJmODQ2ODdhYTUyYzQyZjEzZTdhMjg3MTllOGFkNGRlMDFhYzI4ZGE5OTExNjk1ZTI5OSIsInZlcnNpb24iOjF9.Ti5gL3Tk9hCpriIUhB8ltdKRibSilvRZOxAlLCgAkrhg0dXGE5f4n8almCAjbRJEaPW6H6581PhuUfjgMqceBw |
|
- type: recall |
|
value: 0.9783617516169679 |
|
name: Recall Macro |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWUwMGUwYmY3MWQwOTcwYjI2Yjc3Yzc1YWQ1YjU2ODY3MzAyMDdkNmM3MmFhZmMxZWFhMTUxNzZlNzViMDA0ZiIsInZlcnNpb24iOjF9.IWhPl9xS5pqEaFHKsBZj6JRtJRpQZQqJhQYW6zmtPi2F3speRsKc0iksfHkmPjm678v-wKUJ4zyGfRs-63HmBg |
|
- type: recall |
|
value: 0.974 |
|
name: Recall Micro |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjlhMDY0MmI2NzBiMWY5NTcwYjZlYzE5ODg0ODk1ZTBjZDI4YmZiY2RmZWVlZGUxYzk2MDQ4NjRkMTQ4ZTEzZiIsInZlcnNpb24iOjF9.g5p5b0BqyZxb7Hk9DayRndhs5F0r44h8TXMJDaP6IoFdYzlBfEcZv7UkCu6s6laz9-F-hhZHUZii2ljtYasVAA |
|
- type: recall |
|
value: 0.974 |
|
name: Recall Weighted |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjJjNTE2ZWFjMGYyZGUzOWI3MDRhM2I2MTRjZGNkOWZkZDJhNzQ4OTYwOTQ2NDY5OGNjZTZhOWU2MzlhNTY5YyIsInZlcnNpb24iOjF9.JnRFkZ-v-yRhCf6di7ONcy_8Tv0rNXQir1TVw-cU9fNY1c4vKRmGaKmLGeR7TxpmKzEQtikb6mFwRwhIAhl8AA |
|
- type: f1 |
|
value: 0.9783635353409951 |
|
name: F1 Macro |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjM2NDY3MmUyMmEyZjg5MWZhNjllOGRlNWVkYzgyYmM5ZDBmMDdhYmY5NDAxZmYwMjA0YTkzNTI2MjU0NTRlZiIsInZlcnNpb24iOjF9.HlbHjJa-bpYPjujWODpvfLVMtCnNQMDBCYpLGokfBoXibZGKfIzXcgNdXLdJ-DkmMUriX3wVZtGcRvA2ErUeDw |
|
- type: f1 |
|
value: 0.974 |
|
name: F1 Micro |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYjMxNDE4MTBmYzU2MTllMjlhNTcwYWJhMzRkNTE2ZGFiNmQ0ZTEyOWJhMmU2ZDliYTIzNDExYTM5MTAxYjcxNSIsInZlcnNpb24iOjF9.B7G9Gs74MosZPQ16QH2k-zrmlE8KCtIFu3BcrgObYiuqOz1aFURS3IPoOynVFLp1jnJtgQAmQRY_GDumSS-oDg |
|
- type: f1 |
|
value: 0.97377371266232 |
|
name: F1 Weighted |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmEyNjRlYmE5M2U1OWY0OGY2YjQyN2E0NmQxNjY0NTY3N2JiZmMwOWQ1ZTMzZDcwNTdjNWYwNTRiNTljNjMxMiIsInZlcnNpb24iOjF9.VryHh8G_ZvoiSm1SZRMw4kheGWuI3rQ6GUVqm2uf-kkaSU20rYMW20-VKCtwayLcrIHJ92to6YvvW7yI0Le5DA |
|
- type: loss |
|
value: 0.13812002539634705 |
|
name: loss |
|
verified: true |
|
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjk4MDQ5NGRiNTExYmE3NGU1ZmQ1YjUzMTQ4NzUwNWViYzFiODEzMjc2MDA2MzYyOGNjNjYxYzliNDM4Y2U0ZSIsInZlcnNpb24iOjF9.u68ogPOH6-_pb6ZVulzMVfHIfFlLwBeDp8H4iqgfBadjwj2h-aO0jzc4umWFWtzWespsZvnlDjklbhhgrd1vCQ |
|
--- |
|
|
|
# bert-base-cased trained on TREC 6-class task |
|
|
|
## Model description |
|
|
|
A simple base BERT model trained on the "trec" dataset. |
|
|
|
## Intended uses & limitations |
|
|
|
#### How to use |
|
|
|
##### Transformers |
|
|
|
```python |
|
# Load model and tokenizer |
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer |
|
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
# Use pipeline |
|
from transformers import pipeline |
|
|
|
model_name = "aychang/bert-base-cased-trec-coarse" |
|
|
|
nlp = pipeline("sentiment-analysis", model=model_name, tokenizer=model_name) |
|
|
|
results = nlp(["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"]) |
|
``` |
|
|
|
##### AdaptNLP |
|
|
|
```python |
|
from adaptnlp import EasySequenceClassifier |
|
|
|
model_name = "aychang/bert-base-cased-trec-coarse" |
|
texts = ["Where did the queen go?", "Why did the Queen hire 1000 ML Engineers?"] |
|
|
|
classifer = EasySequenceClassifier |
|
results = classifier.tag_text(text=texts, model_name_or_path=model_name, mini_batch_size=2) |
|
``` |
|
|
|
#### Limitations and bias |
|
|
|
This is minimal language model trained on a benchmark dataset. |
|
|
|
## Training data |
|
|
|
TREC https://huggingface.co/datasets/trec |
|
|
|
## Training procedure |
|
|
|
Preprocessing, hardware used, hyperparameters... |
|
#### Hardware |
|
One V100 |
|
|
|
#### Hyperparameters and Training Args |
|
```python |
|
from transformers import TrainingArguments |
|
|
|
training_args = TrainingArguments( |
|
output_dir='./models', |
|
num_train_epochs=2, |
|
per_device_train_batch_size=16, |
|
per_device_eval_batch_size=16, |
|
warmup_steps=500, |
|
weight_decay=0.01, |
|
evaluation_strategy="steps", |
|
logging_dir='./logs', |
|
save_steps=3000 |
|
) |
|
``` |
|
|
|
## Eval results |
|
|
|
``` |
|
{'epoch': 2.0, |
|
'eval_accuracy': 0.974, |
|
'eval_f1': array([0.98181818, 0.94444444, 1. , 0.99236641, 0.96995708, |
|
0.98159509]), |
|
'eval_loss': 0.138086199760437, |
|
'eval_precision': array([0.98540146, 0.98837209, 1. , 0.98484848, 0.94166667, |
|
0.97560976]), |
|
'eval_recall': array([0.97826087, 0.90425532, 1. , 1. , 1. , |
|
0.98765432]), |
|
'eval_runtime': 1.6132, |
|
'eval_samples_per_second': 309.943} |
|
``` |
|
|