|
--- |
|
license: apache-2.0 |
|
base_model: Salesforce/codet5-small |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- code_x_glue_tc_text_to_code |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: codet5-small-java-v1-text-to-code |
|
results: |
|
- task: |
|
name: Sequence-to-sequence Language Modeling |
|
type: text2text-generation |
|
dataset: |
|
name: code_x_glue_tc_text_to_code |
|
type: code_x_glue_tc_text_to_code |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Rouge1 |
|
type: rouge |
|
value: 57.1969 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# codet5-small-java-v1-text-to-code |
|
|
|
This model is a fine-tuned version of [Salesforce/codet5-small](https://huggingface.co/Salesforce/codet5-small) on the code_x_glue_tc_text_to_code dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7705 |
|
- Rouge1: 57.1969 |
|
- Rouge2: 40.0098 |
|
- Rougel: 55.326 |
|
- Rougelsum: 56.119 |
|
- Gen Len: 16.8335 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 0.7434 | 1.0 | 6250 | 0.8148 | 55.9045 | 38.592 | 54.0278 | 54.7633 | 16.796 | |
|
| 0.6708 | 2.0 | 12500 | 0.7868 | 56.3354 | 38.9843 | 54.5278 | 55.2197 | 16.751 | |
|
| 0.6309 | 3.0 | 18750 | 0.7741 | 56.9883 | 39.8626 | 55.1321 | 55.9173 | 16.8495 | |
|
| 0.6262 | 4.0 | 25000 | 0.7705 | 57.1969 | 40.0098 | 55.326 | 56.119 | 16.8335 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|