language-detection-fine-tuned-on-xlm-roberta-base

This model is a fine-tuned version of xlm-roberta-base on the common_language dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1527
  • Accuracy: 0.9779

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.2047 1.0 22194 0.1527 0.9779

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
12
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for barto17/language-detection-fine-tuned-on-xlm-roberta-base

Finetuned
(2732)
this model

Dataset used to train barto17/language-detection-fine-tuned-on-xlm-roberta-base

Spaces using barto17/language-detection-fine-tuned-on-xlm-roberta-base 3

Evaluation results