Edit model card

Exllama v2 Quantizations of sparsetral-16x7B-v2

Using turboderp's ExLlamaV2 v0.0.13 for quantization.

The "main" branch only contains the measurement.json, download one of the other branches for the model (see below)

Each branch contains an individual bits per weight, with the main one containing only the meaurement.json for further conversions.

Original model: https://huggingface.co/serpdotai/sparsetral-16x7B-v2

Branch Bits lm_head bits VRAM (4k) VRAM (16k) VRAM (32k) Description
8_0 8.0 8.0 8.3 GB 9.7 GB 11.8 GB Maximum quality that ExLlamaV2 can produce, near unquantized performance.
6_5 6.5 8.0 7.1 GB 8.5 GB 10.6 GB Very similar to 8.0, good tradeoff of size vs performance, recommended.
5_0 5.0 6.0 5.7 GB 7.1 GB 9.2 GB Slightly lower quality vs 6.5, but usable on 8GB cards.
4_25 4.25 6.0 5.1 GB 6.5 GB 8.6 GB GPTQ equivalent bits per weight, slightly higher quality.
3_5 3.5 6.0 4.4 GB 5.8 GB 7.9 GB Lower quality, only use if you have to.

Download instructions

With git:

git clone --single-branch --branch 6_5 https://huggingface.co/bartowski/sparsetral-16x7B-v2-exl2 sparsetral-16x7B-v2-exl2-6_5

With huggingface hub (credit to TheBloke for instructions):

pip3 install huggingface-hub

To download the main (only useful if you only care about measurement.json) branch to a folder called sparsetral-16x7B-v2-exl2:

mkdir sparsetral-16x7B-v2-exl2
huggingface-cli download bartowski/sparsetral-16x7B-v2-exl2 --local-dir sparsetral-16x7B-v2-exl2 --local-dir-use-symlinks False

To download from a different branch, add the --revision parameter:

Linux:

mkdir sparsetral-16x7B-v2-exl2-6_5
huggingface-cli download bartowski/sparsetral-16x7B-v2-exl2 --revision 6_5 --local-dir sparsetral-16x7B-v2-exl2-6_5 --local-dir-use-symlinks False

Windows (which apparently doesn't like _ in folders sometimes?):

mkdir sparsetral-16x7B-v2-exl2-6.5
huggingface-cli download bartowski/sparsetral-16x7B-v2-exl2 --revision 6_5 --local-dir sparsetral-16x7B-v2-exl2-6.5 --local-dir-use-symlinks False

Want to support my work? Visit my ko-fi page here: https://ko-fi.com/bartowski

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Examples
Unable to determine this model's library. Check the docs .

Dataset used to train bartowski/sparsetral-16x7B-v2-exl2