|
--- |
|
datasets: |
|
- tatsu-lab/alpaca |
|
language: |
|
- en |
|
--- |
|
### Model card for Alpaca-30B |
|
|
|
This is a Llama model instruction-finetuned with LoRa for 3 epochs on the Tatsu Labs Alpaca dataset. It was trained in 8bit mode. |
|
|
|
To run this model, you can run the following or use the following repo for [generation](https://github.com/aspctu/alpaca-lora). |
|
|
|
``` |
|
# Code adapted from https://github.com/tloen/alpaca-lora |
|
import torch |
|
from peft import PeftModel |
|
import transformers |
|
|
|
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig |
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-30b-hf") |
|
|
|
model = LlamaForCausalLM.from_pretrained( |
|
"decapoda-research/llama-30b-hf", |
|
load_in_8bit=True, |
|
torch_dtype=torch.float16, |
|
device_map="auto", |
|
) |
|
|
|
model = PeftModel.from_pretrained( |
|
model, |
|
"baseten/alpaca-30b", |
|
torch_dtype=torch.float16 |
|
) |
|
|
|
def generate_prompt(instruction, input=None): |
|
if input: |
|
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Input: |
|
{input} |
|
|
|
### Response:""" |
|
else: |
|
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. |
|
|
|
### Instruction: |
|
{instruction} |
|
|
|
### Response:""" |
|
|
|
|
|
model.eval() |
|
|
|
|
|
def evaluate( |
|
instruction, |
|
input=None, |
|
temperature=0.1, |
|
top_p=0.75, |
|
top_k=40, |
|
num_beams=4, |
|
**kwargs, |
|
): |
|
prompt = generate_prompt(instruction, input) |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to(device) |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
**kwargs, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=2048, |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
return output.split("### Response:")[1].strip() |
|
``` |