Multi-dialect-Arabic-BERT
This is a repository of Multi-dialect Arabic BERT model.
By Mawdoo3-AI.
About our Multi-dialect-Arabic-BERT model
Instead of training the Multi-dialect Arabic BERT model from scratch, we initialized the weights of the model using Arabic-BERT and trained it on 10M arabic tweets from the unlabled data of The Nuanced Arabic Dialect Identification (NADI) shared task.
To cite this work
@misc{talafha2020multidialect,
title={Multi-Dialect Arabic BERT for Country-Level Dialect Identification},
author={Bashar Talafha and Mohammad Ali and Muhy Eddin Za'ter and Haitham Seelawi and Ibraheem Tuffaha and Mostafa Samir and Wael Farhan and Hussein T. Al-Natsheh},
year={2020},
eprint={2007.05612},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Usage
The model weights can be loaded using transformers
library by HuggingFace.
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("bashar-talafha/multi-dialect-bert-base-arabic")
model = AutoModel.from_pretrained("bashar-talafha/multi-dialect-bert-base-arabic")
Example using pipeline
:
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="bashar-talafha/multi-dialect-bert-base-arabic ",
tokenizer="bashar-talafha/multi-dialect-bert-base-arabic "
)
fill_mask(" سافر الرحالة من مطار [MASK] ")
[{'sequence': '[CLS] سافر الرحالة من مطار الكويت [SEP]', 'score': 0.08296813815832138, 'token': 3226},
{'sequence': '[CLS] سافر الرحالة من مطار دبي [SEP]', 'score': 0.05123933032155037, 'token': 4747},
{'sequence': '[CLS] سافر الرحالة من مطار مسقط [SEP]', 'score': 0.046838656067848206, 'token': 13205},
{'sequence': '[CLS] سافر الرحالة من مطار القاهرة [SEP]', 'score': 0.03234650194644928, 'token': 4003},
{'sequence': '[CLS] سافر الرحالة من مطار الرياض [SEP]', 'score': 0.02606341242790222, 'token': 2200}]
Repository
Please check the original repository for more information.
- Downloads last month
- 53
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.