|
---
|
|
language: en
|
|
tags: question answering
|
|
license: apache-2.0
|
|
datasets:
|
|
- squad
|
|
- batterydata/battery-device-data-qa
|
|
metrics: squad
|
|
---
|
|
|
|
# BatterySciBERT-cased for QA
|
|
**Language model:** batteryscibert-cased
|
|
**Language:** English
|
|
**Downstream-task:** Extractive QA
|
|
**Training data:** SQuAD v1
|
|
**Eval data:** SQuAD v1
|
|
**Code:** See [example](https://github.com/ShuHuang/batterybert)
|
|
**Infrastructure**: 8x DGX A100
|
|
## Hyperparameters
|
|
```
|
|
batch_size = 32
|
|
n_epochs = 3
|
|
base_LM_model = "batteryscibert-cased"
|
|
max_seq_len = 386
|
|
learning_rate = 2e-5
|
|
doc_stride=128
|
|
max_query_length=64
|
|
```
|
|
## Performance
|
|
Evaluated on the SQuAD v1.0 dev set.
|
|
```
|
|
"exact": 79.66,
|
|
"f1": 87.43,
|
|
```
|
|
Evaluated on the battery device dataset.
|
|
```
|
|
"precision": 65.09,
|
|
"recall": 84.56,
|
|
```
|
|
## Usage
|
|
### In Transformers
|
|
```python
|
|
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
|
|
|
|
model_name = "batterydata/batteryscibert-cased-squad-v1"
|
|
# a) Get predictions
|
|
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
|
|
QA_input = {
|
|
'question': 'What is the electrolyte?',
|
|
'context': 'The typical non-aqueous electrolyte for commercial Li-ion cells is a solution of LiPF6 in linear and cyclic carbonates.'
|
|
}
|
|
res = nlp(QA_input)
|
|
# b) Load model & tokenizer
|
|
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
```
|
|
## Authors
|
|
Shu Huang: `sh2009 [at] cam.ac.uk`
|
|
|
|
Jacqueline Cole: `jmc61 [at] cam.ac.uk`
|
|
|
|
## Citation
|
|
BatteryBERT: A Pre-trained Language Model for Battery Database Enhancement |