deep learning project 2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • json
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("bbmb/deep-learning-for-embedding-model-ssilwal-qpham6_army_doc")
# Run inference
sentences = [
    'Offense \n11 January 2024 ATP 3-21.8 4-61\nlight the target, making it easier to acquire effectively. Leaders and Soldiers \nuse the infrared devices to identify enemy or friendly personnel and then \nengage targets using their aiming lights. \n4-172. Illuminating rounds fired to burn on the ground can mark objectives. This helps\nthe platoon orient on the objective but may adversely affect night vision devices.\n4-173. Leaders plan but do not always use illumination during limited visibility\nattacks. Battalion commanders normally control conventional illumination but ma y\na\nuthorize the company commander to do so. If the commander decides to use\nconventional illumination , the commander should not call for it until the assault is\ninitiated or the attack is detected. It should be placed on several locations over a wide\narea to confuse the enemy as to the exact place of the attack. It should be placed beyond\nthe objective to help assaulting Soldiers see and fire at withdrawing or counterattacking\nenemy Soldiers. Infrared illumination is a good capability to light the objective without\nlighting it for enemy forces without night vision devices.  This advantage is degraded\nwhen used against a peer threat with the same night vision capabilities.\n4-174. The platoon leader , squad leaders , and vehicle commanders must know unit\ntactical SOP and develop sound COAs to synchronize the employment of infrared\nillumination devices , target designators , and aiming lights during their assault on the\nobjective. These include using luminous tape or chemical lights to mark personnel and\nusing weapons control restrictions.\n4-175. The platoon leader may use the following techniques to increase control during\nthe assault:\n\uf06c Use no flares, grenades, or obscuration on the objective.\n\uf06c Use mortar or artillery rounds to orient attacking units.\n\uf06c Use a base squad or fire team to pace and guide others.\n\uf06c Reduce intervals between Soldiers and squads.\n4-176. Like a daylight attack , indirect and direct fires are planned for a limited\nvisibility attack but are not executed unless the platoon is detected or is ready to assault.\nSome weapons may fire before the attack and maintain a pattern to deceive the enemy\nor to help cover noise ma de by the platoon ’s movement. This is not done if it will\ndisclose the attack.\n4-177. Obscuration further reduces the enemy’s visibility, particularly if the enemy has\nnight vision devices. The FO fires obscuration rounds close to or on enemy positions ,\nso it does not restrict friendly movement or hinder the reduction of obstacles. Employing \nobscuration on the objective during the assault may make it hard for assaulting Soldiers\nto find enemy fighting positions. If enough thermal sights are available , obscuration on\nthe objective may provide a decisive advantage for a well-trained platoon.\nNote. I f the enemy is equipped with night vision devices , leaders must evaluate \nthe risk of using each technique and ensure the mission is not compromised by \nthe enemy’s ability to detect infrared light sources.',
    'What are the advantages of using infrared illumination in assaults?',
    'How can leaders effectively provide command and control during defensive operations?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric dim_384 dim_256 dim_128 dim_64
cosine_accuracy@1 0.0037 0.0037 0.0037 0.0019
cosine_accuracy@3 0.0131 0.0112 0.0093 0.0075
cosine_accuracy@5 0.0485 0.0373 0.0466 0.0429
cosine_accuracy@10 0.4496 0.4459 0.4366 0.4216
cosine_precision@1 0.0037 0.0037 0.0037 0.0019
cosine_precision@3 0.0044 0.0037 0.0031 0.0025
cosine_precision@5 0.0097 0.0075 0.0093 0.0086
cosine_precision@10 0.045 0.0446 0.0437 0.0422
cosine_recall@1 0.0037 0.0037 0.0037 0.0019
cosine_recall@3 0.0131 0.0112 0.0093 0.0075
cosine_recall@5 0.0485 0.0373 0.0466 0.0429
cosine_recall@10 0.4496 0.4459 0.4366 0.4216
cosine_ndcg@10 0.1501 0.1489 0.1465 0.139
cosine_mrr@10 0.0659 0.0653 0.0646 0.0595
cosine_map@100 0.0862 0.0859 0.0847 0.079

Training Details

Training Dataset

json

  • Dataset: json
  • Size: 4,820 training samples
  • Columns: positive and anchor
  • Approximate statistics based on the first 1000 samples:
    positive anchor
    type string string
    details
    • min: 100 tokens
    • mean: 248.18 tokens
    • max: 256 tokens
    • min: 9 tokens
    • mean: 15.06 tokens
    • max: 27 tokens
  • Samples:
    positive anchor
    Appendix A
    A-22 ATP 3-21.8 11 January 2024
    A-68. Observed fire. Usually is used when the platoon is in protected defensive positions
    with engagement ranges more than 2,500 meters for stabilized systems (when attached)
    and 1,500 meters for unstabilized systems. It can be employed between elements of the
    platoon, such as the squad lasing and observing while the weapons squad engages. The
    platoon leader directs one squad to engage. The remaining squads observe fires and
    prepare to engage on order in case the engaging element consistently misses its targets ,
    experiences a malfunction, or runs low on ammunition. Observed fire allows for mutual
    observation and assistance while protecting the location of the observing elements.
    A-69. Sequential fire. Entails the subordinate elements of a unit engaging the same point
    or area target one after another in an arranged sequence. Sequential fire also can help to
    prevent the waste of ammunition, as when a platoon waits to see the effects of the ...
    What is the purpose of having one squad engage while others observe in an observed fire scenario?
    Glossary
    Glossary-4 ATP 3-21.8 11 January 2024
    PLD probable line of deployment
    PPEP personal protective equipment posture
    RFL restrictive fire line
    RM risk management
    ROE rules of engagement
    RS reduced sensitivity
    RTO radiotelephone operator
    S-2 battalion or brigade intelligence staff officer
    SALUTE size, activity, location, unit, time, and equipment
    SDM squad-designated marksman
    SITEMP situation template
    SLM shoulder-launched munition
    SOP standard operating procedure
    STP Soldier training publication
    TAA tactical assembly area
    TC training circular
    TCCC tactical combat casualty care
    TLP troop leading procedures
    TM technical manual
    TRP target reference point
    U.S. United States
    WARNORD warning order
    WCS weapons control status
    WP white phosphorous
    SECTION II – TERMS
    actions on contact
    A process to help leaders understand what is happening and to take action.
    (FM 3-90)
    air-ground operations
    The simultaneous or synchronized employment of ground forces with avi...
    How is the term SDM used in the military?
    Chapter 1
    1-2 ATP 3-21.8 11 January 2024
    MISSION, CAPABILITIES, AND LIMITATIONS
    1-2. The mission of the Infantry rifle platoon is to close with the enemy using fire and
    movement to destroy or capture enemy forces , or to repel enemy attacks by fire , close
    co
    mbat, and counterattack to control land areas , including populations and resources.
    The Infantry rifle platoon leader exercises command and control and directs the
    operation of the platoon and attached units while conducting combined arms warfare
    throughout the depth of the platoon’s area of operations (AO). Platoon missions ,
    although not inclusive, may include reducing fortified areas , infiltrating and seizing
    objectives in the enemy’ s rear, eliminating enemy force remnants in restricted terrain ,
    securing key facilities and activities, and conducting operations in support of stability
    operations tasks in the wake of maneuvering forces. Reconnaissance and surveillance
    operations and security operations remain a core compe...
    What offensive and defensive actions can an Infantry rifle platoon perform?
  • Loss: MatryoshkaLoss with these parameters:
    {
        "loss": "MultipleNegativesRankingLoss",
        "matryoshka_dims": [
            384,
            256,
            128,
            64
        ],
        "matryoshka_weights": [
            1,
            1,
            1,
            1
        ],
        "n_dims_per_step": -1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 16
  • gradient_accumulation_steps: 8
  • num_train_epochs: 20
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.2
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 8
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 20
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.2
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss dim_384_cosine_ndcg@10 dim_256_cosine_ndcg@10 dim_128_cosine_ndcg@10 dim_64_cosine_ndcg@10
0.9474 9 - 0.1225 0.1221 0.1145 0.0915
1.0526 10 7.2521 - - - -
2.0 19 - 0.1296 0.1261 0.1157 0.1089
2.1053 20 5.4977 - - - -
2.9474 28 - 0.1294 0.1377 0.1262 0.1090
3.1579 30 4.3477 - - - -
4.0 38 - 0.1330 0.1378 0.1260 0.1126
4.2105 40 3.3767 - - - -
4.9474 47 - 0.1415 0.1388 0.1294 0.1221
5.2632 50 2.6443 - - - -
6.0 57 - 0.1515 0.1395 0.1348 0.1218
6.3158 60 2.0824 - - - -
6.9474 66 - 0.1480 0.1411 0.1335 0.1242
7.3684 70 1.6734 - - - -
8.0 76 - 0.1491 0.1481 0.1428 0.1313
8.4211 80 1.3894 - - - -
8.9474 85 - 0.1449 0.1497 0.1419 0.1341
9.4737 90 1.1443 - - - -
10.0 95 - 0.1466 0.1494 0.1399 0.1396
10.5263 100 1.0121 - - - -
10.9474 104 - 0.1458 0.1477 0.1415 0.1371
11.5789 110 0.8833 - - - -
12.0 114 - 0.1479 0.1474 0.1445 0.1374
12.6316 120 0.8201 - - - -
12.9474 123 - 0.1519 0.1486 0.1458 0.1360
13.6842 130 0.736 - - - -
14.0 133 - 0.1505 0.1471 0.1484 0.1376
14.7368 140 0.6924 - - - -
14.9474 142 - 0.1496 0.1486 0.1451 0.1396
15.7895 150 0.672 - - - -
16.0 152 - 0.1492 0.1489 0.1464 0.1404
16.8421 160 0.6455 - - - -
16.9474 161 - 0.1496 0.1493 0.1468 0.1389
17.8947 170 0.6538 - - - -
18.0 171 - 0.1501 0.1470 0.1461 0.1393
18.9474 180 0.628 0.1501 0.1489 0.1465 0.1390
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MatryoshkaLoss

@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
22.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bbmb/deep-learning-for-embedding-model-ssilwal-qpham6_army_doc

Finetuned
(210)
this model

Evaluation results