See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-160m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4cad4f74c7fcbf14_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4cad4f74c7fcbf14_train_data.json
type:
field_input: concatenated_headline
field_instruction: headline
field_output: trends
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: 2
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: bbytxt/d3798400-dab8-4ff1-9db4-d29585565f2b
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 3.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 64
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/4cad4f74c7fcbf14_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 2048
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: d3798400-dab8-4ff1-9db4-d29585565f2b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: d3798400-dab8-4ff1-9db4-d29585565f2b
warmup_steps: 200
weight_decay: 0.0
xformers_attention: null
d3798400-dab8-4ff1-9db4-d29585565f2b
This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 7.7403
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
14.0369 | 0.0019 | 1 | 13.9245 |
12.7921 | 0.0931 | 50 | 12.7002 |
7.9208 | 0.1862 | 100 | 7.7403 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 2
Model tree for bbytxt/d3798400-dab8-4ff1-9db4-d29585565f2b
Base model
JackFram/llama-160m