metadata
license: apache-2.0
datasets:
- Lin-Chen/ShareGPT4V
- liuhaotian/LLaVA-Pretrain
- liuhaotian/LLaVA-Instruct-150K
language:
- en
- zh
tags:
- llava
- vision-language
- llm
- lmm
TinyLLaVA: A Framework of Small-scale Large Multimodal Models
π News
- [2024.02.25] Update evaluation scripts and docs!
- [2024.02.25] Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
- [2024.02.24] Example code on inference and model loading added!
- [2024.02.23] Evaluation code and scripts released!
- [2024.02.21] Creating the TinyLLaVABench repository on GitHub!
- [2024.02.21] Our paper: TinyLLaVA: A Framework of Small-scale Large Multimodal Models is out!
- [2024.01.11] Our fist model TinyLLaVA-1.4B is out!
β TODO
- Add support for Ollama and llama.cpp.
- Developers' guide / How to build demo locally.
- Model Zoo descriptions.
- Examples and inference.
- Release code for training.
- Add descriptions for evaluation.
- Add descriptions for data preparation.
- Release TinyLLaVA-1.5B and TinyLLaVA-2.0B.
- Release TinyLLaVA-3.1B.
- Release the evaluation code and weights today(2024.2.23).
π₯ High performance, but with fewer parameters
- Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
π³ Model Zoo
Legacy Model
Pretrained Models
Model Details
Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
---|---|---|---|---|---|---|---|---|---|---|
TinyLLaVA-3.1B | Phi-2 | TinyLLaVA-3.1B | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
TinyLLaVA-2.0B | StableLM-2-1.6B | TinyLLaVA-2.0B | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
TinyLLaVA-1.5B | TinyLlama | TinyLLaVA-1.5B | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
π§ Requirements and Installation
We recommend the requirements as follows.
- Clone this repository and navigate to LLaVA folder
git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git
cd TinyLLaVABench
- Install Package
conda create -n tinyllava python=3.10 -y
conda activate tinyllava
pip install --upgrade pip # enable PEP 660 support
pip install -e .
- Install additional packages for training cases
pip install -e ".[train]"
pip install flash-attn --no-build-isolation
Upgrade to latest code base
git pull
pip install -e .
# if you see some import errors when you upgrade, please try running the command below (without #)
# pip install flash-attn --no-build-isolation --no-cache-dir
π§ Quick Start
Load model
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
tokenizer, model, image_processor, context_len = load_pretrained_model(
model_path=model_path,
model_base=None,
model_name=get_model_name_from_path(model_path)
)
π§ Run Inference
Here's an example of running inference with TinyLLaVA-3.1B
Run Inference
from tinyllava.model.builder import load_pretrained_model
from tinyllava.mm_utils import get_model_name_from_path
from tinyllava.eval.run_tiny_llava import eval_model
model_path = "bczhou/TinyLLaVA-3.1B"
prompt = "What are the things I should be cautious about when I visit here?"
image_file = "https://llava-vl.github.io/static/images/view.jpg"
args = type('Args', (), {
"model_path": model_path,
"model_base": None,
"model_name": get_model_name_from_path(model_path),
"query": prompt,
"conv_mode": "phi",
"image_file": image_file,
"sep": ",",
"temperature": 0,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 512
})()
eval_model(args)
Important
We use different conv_mode
for different models. Replace the conv_mode
in args
according to this table:
model | conv_mode |
---|---|
TinyLLaVA-3.1B | phi |
TinyLLaVA-2.0B | phi |
TinyLLaVA-1.5B | v1 |
Evaluation
To ensure the reproducibility, we evaluate the models with greedy decoding.
See Evaluation.md
β Citation
If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
@misc{zhou2024tinyllava,
title={TinyLLaVA: A Framework of Small-scale Large Multimodal Models},
author={Baichuan Zhou and Ying Hu and Xi Weng and Junlong Jia and Jie Luo and Xien Liu and Ji Wu and Lei Huang},
year={2024},
eprint={2402.14289},
archivePrefix={arXiv},
primaryClass={cs.LG}
}