Edit model card

resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5

This model is a fine-tuned version of microsoft/resnet-50 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9013
  • Accuracy: 0.7933
  • Brier Loss: 0.3080
  • Nll: 1.8102
  • F1 Micro: 0.7932
  • F1 Macro: 0.7937
  • Ece: 0.0719
  • Aurc: 0.0635

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Brier Loss Nll F1 Micro F1 Macro Ece Aurc
No log 1.0 250 6.0054 0.098 0.9327 9.3196 0.0980 0.0481 0.0462 0.8670
6.0141 2.0 500 5.4713 0.2195 0.8933 5.2235 0.2195 0.1452 0.1046 0.7129
6.0141 3.0 750 4.4006 0.4535 0.7034 3.0178 0.4535 0.4351 0.1373 0.3334
4.5079 4.0 1000 3.8431 0.59 0.5686 2.5843 0.59 0.5822 0.1309 0.2072
4.5079 5.0 1250 3.5315 0.6552 0.4864 2.4330 0.6552 0.6537 0.1048 0.1504
3.5028 6.0 1500 3.2850 0.707 0.4163 2.2375 0.707 0.7082 0.0790 0.1111
3.5028 7.0 1750 3.0974 0.7312 0.3721 2.0933 0.7312 0.7328 0.0452 0.0899
3.0599 8.0 2000 3.0385 0.7455 0.3561 2.0148 0.7455 0.7456 0.0432 0.0838
3.0599 9.0 2250 2.9978 0.7565 0.3432 1.9780 0.7565 0.7572 0.0437 0.0777
2.8562 10.0 2500 2.9853 0.7622 0.3397 1.9176 0.7622 0.7619 0.0495 0.0751
2.8562 11.0 2750 2.9803 0.7615 0.3385 1.9327 0.7615 0.7627 0.0547 0.0760
2.7414 12.0 3000 2.9711 0.7658 0.3322 1.9439 0.7658 0.7661 0.0495 0.0740
2.7414 13.0 3250 2.9618 0.771 0.3276 1.8599 0.771 0.7718 0.0548 0.0704
2.6658 14.0 3500 2.9534 0.7762 0.3252 1.8935 0.7762 0.7770 0.0581 0.0699
2.6658 15.0 3750 2.9568 0.776 0.3248 1.8836 0.776 0.7776 0.0588 0.0699
2.6197 16.0 4000 2.9196 0.7812 0.3169 1.8338 0.7812 0.7814 0.0601 0.0655
2.6197 17.0 4250 2.9267 0.7785 0.3202 1.8430 0.7785 0.7783 0.0647 0.0677
2.5794 18.0 4500 2.9189 0.779 0.3155 1.8279 0.779 0.7794 0.0631 0.0661
2.5794 19.0 4750 2.9324 0.7823 0.3177 1.8508 0.7823 0.7823 0.0665 0.0669
2.5553 20.0 5000 2.9192 0.7837 0.3146 1.8312 0.7837 0.7840 0.0641 0.0654
2.5553 21.0 5250 2.9160 0.7817 0.3140 1.8366 0.7817 0.7828 0.0682 0.0658
2.53 22.0 5500 2.9172 0.7837 0.3139 1.8138 0.7837 0.7842 0.0602 0.0652
2.53 23.0 5750 2.9132 0.7875 0.3134 1.8254 0.7875 0.7877 0.0656 0.0646
2.5127 24.0 6000 2.9108 0.7875 0.3132 1.8367 0.7875 0.7869 0.0669 0.0652
2.5127 25.0 6250 2.9272 0.7837 0.3139 1.8551 0.7837 0.7843 0.0632 0.0653
2.4979 26.0 6500 2.9157 0.7867 0.3128 1.8101 0.7868 0.7876 0.0655 0.0647
2.4979 27.0 6750 2.9031 0.785 0.3112 1.8089 0.785 0.7856 0.0688 0.0639
2.4814 28.0 7000 2.9094 0.7875 0.3110 1.8594 0.7875 0.7880 0.0677 0.0646
2.4814 29.0 7250 2.9110 0.7885 0.3116 1.8150 0.7885 0.7891 0.0696 0.0639
2.4741 30.0 7500 2.9039 0.7877 0.3091 1.8471 0.7877 0.7887 0.0694 0.0632
2.4741 31.0 7750 2.9029 0.7907 0.3087 1.7604 0.7907 0.7917 0.0691 0.0633
2.4626 32.0 8000 2.8983 0.7877 0.3094 1.8191 0.7877 0.7884 0.0677 0.0625
2.4626 33.0 8250 2.9024 0.7897 0.3088 1.8025 0.7897 0.7905 0.0720 0.0635
2.4558 34.0 8500 2.9055 0.792 0.3070 1.7869 0.792 0.7920 0.0667 0.0628
2.4558 35.0 8750 2.9055 0.788 0.3104 1.8349 0.788 0.7883 0.0733 0.0645
2.4481 36.0 9000 2.9061 0.7887 0.3078 1.7840 0.7887 0.7898 0.0676 0.0642
2.4481 37.0 9250 2.9086 0.7917 0.3102 1.7942 0.7917 0.7923 0.0716 0.0644
2.4422 38.0 9500 2.9067 0.7897 0.3084 1.7915 0.7897 0.7900 0.0704 0.0637
2.4422 39.0 9750 2.9080 0.7927 0.3092 1.7951 0.7927 0.7930 0.0709 0.0631
2.4386 40.0 10000 2.9064 0.7943 0.3084 1.8079 0.7943 0.7949 0.0734 0.0635
2.4386 41.0 10250 2.8990 0.792 0.3056 1.7918 0.792 0.7924 0.0699 0.0623
2.4312 42.0 10500 2.9057 0.7893 0.3090 1.7892 0.7893 0.7901 0.0735 0.0641
2.4312 43.0 10750 2.8998 0.7923 0.3079 1.7909 0.7923 0.7932 0.0707 0.0630
2.4294 44.0 11000 2.9108 0.7905 0.3090 1.8220 0.7905 0.7916 0.0773 0.0636
2.4294 45.0 11250 2.9030 0.7927 0.3086 1.8126 0.7927 0.7932 0.0710 0.0631
2.4282 46.0 11500 2.9033 0.7915 0.3077 1.8234 0.7915 0.7920 0.0712 0.0631
2.4282 47.0 11750 2.8975 0.7957 0.3063 1.8070 0.7957 0.7968 0.0702 0.0630
2.4246 48.0 12000 2.9049 0.7935 0.3085 1.8090 0.7935 0.7944 0.0722 0.0635
2.4246 49.0 12250 2.9020 0.792 0.3075 1.8233 0.792 0.7927 0.0700 0.0638
2.4227 50.0 12500 2.9013 0.7933 0.3080 1.8102 0.7932 0.7937 0.0719 0.0635

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.2.0.dev20231002
  • Datasets 2.7.1
  • Tokenizers 0.13.3
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bdpc/resnet101_rvl-cdip-cnn_rvl_cdip-NK1000_kd_NKD_t1.0_g1.5

Finetuned
(123)
this model