Jo Kristian Bergum
Update README.md
5de280b
---
license: apache-2.0
datasets:
- go_emotions
metrics:
- accuracy
model-index:
- name: xtremedistil-emotion
results:
- task:
name: Multi Label Text Classification
type: multi_label_classification
dataset:
name: go_emotions
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: NaN
---
# xtremedistil-l6-h384-go-emotion
This model is a fine-tuned version of [microsoft/xtremedistil-l6-h384-uncased](https://huggingface.co/microsoft/xtremedistil-l6-h384-uncased) on the
[go_emotions dataset](https://huggingface.co/datasets/go_emotions).
See notebook for how the model was trained and converted to ONNX format [![Training Notebook](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jobergum/emotion/blob/main/TrainGoEmotions.ipynb)
This model is deployed to [aiserv.cloud](https://aiserv.cloud/) for live demo of the model.
See [https://github.com/jobergum/browser-ml-inference](https://github.com/jobergum/browser-ml-inference) for how to reproduce.
### Training hyperparameters
- batch size 128
- learning_rate=3e-05
- epocs 4
<pre>
Num examples = 211225
Num Epochs = 4
Instantaneous batch size per device = 128
Total train batch size (w. parallel, distributed & accumulation) = 128
Gradient Accumulation steps = 1
Total optimization steps = 6604
[6604/6604 53:23, Epoch 4/4]
Step Training Loss
500 0.263200
1000 0.156900
1500 0.152500
2000 0.145400
2500 0.140500
3000 0.135900
3500 0.132800
4000 0.129400
4500 0.127200
5000 0.125700
5500 0.124400
6000 0.124100
6500 0.123400
</pre>