berkaycancunnuk's picture
Upload folder using huggingface_hub
5c0d5b7 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:10312
  - loss:CosineSimilarityLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
  - source_sentence: ' 27 senaryyo ve diyalog yazm ve geliştirme projsn 232 bin lira'
    sentences:
      - ' Demirel liderliğindeki AP''nin oyları yüzde 17 oranında geriledi.'
      - ' 27 senaryo ve diyalog yazım ve geliştirme projesine 232 bin lira'
      - >-
        AŞI ÜRETİMİNİ DE GERÇEKLEŞTİREBİLECEĞİZ Yüksek aşılama yüzdelerine
        sağlık çalışanları sayesinde eriştiklerini dile getiren Akdağ
  - source_sentence: ' Bursa'
    sentences:
      - ' ameliyathaneye getirmeleri için hasta yakınlarına verdiğini savundu.'
      - ' buraya tekrar getirmenin yollarını'
      - ' Yahoo ve Wordpress 5 yıldız alırken'
  - source_sentence: ' her mevsim ziyaretilerin ğlgisini çekiyor.'
    sentences:
      - ' İzmir başta olmak üzere Türkiye geneline gönderildiğini anlatan Can'
      - ' 89 CHP'
      - ' Türkiye''nin kredi notu üzerinde uygulanacak politikalar rol oynayacak" denildi.'
  - source_sentence: ' estetik tıbbına kazandırılan bu yemi yöntemle'
    sentences:
      - Van Devlet Tiyatrosu 'Mem İle Zin' ile 20 Kasım'da Muş
      - The Wall turnesi
      - ' estetik tıbbına kazandırılan bu yeni yöntemle'
  - source_sentence: ' ''Yıpdız Savaşlaı'' sersnn yapmcs Lucadfilm prodüksiyon şirkettiini'
    sentences:
      - ' artık ABD piyasasında yeni model araçların olmayacağını'
      - ' kolluk görevlilerinin özellikle resmi olmayan gözaltı merkezlerinde güç kullanmaya devam ettiklerine'
      - ' 2 Türkiye Kupası ve 2 Süper Kupa şampiyonluğu yaşayıp'
pipeline_tag: sentence-similarity
library_name: sentence-transformers

SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    " 'Yıpdız Savaşlaı' sersnn yapmcs Lucadfilm prodüksiyon şirkettiini",
    ' 2 Türkiye Kupası ve 2 Süper Kupa şampiyonluğu yaşayıp',
    ' artık ABD piyasasında yeni model araçların olmayacağını',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 10,312 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string float
    details
    • min: 3 tokens
    • mean: 25.51 tokens
    • max: 208 tokens
    • min: 3 tokens
    • mean: 25.13 tokens
    • max: 256 tokens
    • min: 1.0
    • mean: 1.0
    • max: 1.0
  • Samples:
    sentence_0 sentence_1 label
    internetin billgiye erişğmde ve toplulukların etkileşiminde sınırları orttadan kaldrdğn dikkat çekereı tasfiye edilen İl Özel İdaresi’nin taşınır ve taşınmaz mallarının dağıtımını yapan Devir Tasfiye Komisyonu’nun toplantılarına 1.0
    "Vin Nation" "Gin Nation" 1.0
    ya da çocukluk ccağı ezaması denln deri hastalığından kkurtulmadda da etkiili oluyor. ya da çocukluk cağı egzaması denilen deri hastalığından kurtulmada da etkili oluyor. 1.0
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 30
  • per_device_eval_batch_size: 30
  • num_train_epochs: 2
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 30
  • per_device_eval_batch_size: 30
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.4845 500 0.0044
0.9690 1000 0.0
1.4535 1500 0.0
1.9380 2000 0.0
1.3550 500 0.0
1.6474 1000 0.0
0.9208 500 0.0
1.8416 1000 0.0
1.2107 500 0.0
1.6474 1000 0.0
1.3089 500 0.0
1.5504 1000 0.0
1.2594 500 0.0
1.8416 1000 0.0
1.1628 500 0.0
1.9380 1000 0.0
1.3550 500 0.0
1.8416 1000 0.0
1.2107 500 0.0

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.1
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}