xlm-tn-20epochs-lr / README.md
betteib's picture
Training in progress epoch 5
b63e021
|
raw
history blame
2.31 kB
metadata
license: mit
base_model: Davlan/xlm-roberta-base-finetuned-arabic
tags:
  - generated_from_keras_callback
model-index:
  - name: betteib/xlm-tn-20epochs-lr
    results: []

betteib/xlm-tn-20epochs-lr

This model is a fine-tuned version of Davlan/xlm-roberta-base-finetuned-arabic on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 7.0724
  • Train Accuracy: 0.0291
  • Validation Loss: 6.9350
  • Validation Accuracy: 0.0286
  • Epoch: 5

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'WarmUp', 'config': {'initial_learning_rate': 0.0001, 'decay_schedule_fn': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0001, 'decay_steps': 4464, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'passive_serialization': True}, 'warmup_steps': 496, 'power': 1.0, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.03}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
9.6176 0.0035 9.2319 0.0048 0
8.9356 0.0059 8.5303 0.0071 1
8.1494 0.0100 7.7161 0.0137 2
7.5554 0.0180 7.2709 0.0281 3
7.2561 0.0273 7.0588 0.0289 4
7.0724 0.0291 6.9350 0.0286 5

Framework versions

  • Transformers 4.31.0
  • TensorFlow 2.12.0
  • Datasets 2.19.1
  • Tokenizers 0.13.3